Example #1
0
def Poisson_loss(y_true, y_pred):
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    y_pred = R.clip(y_pred, R.epsilon(), R.Saclar(1) - R.epsilon())

    return R.sub(y_pred, R.elemul(y_true, R.natlog(y_pred)))
Example #2
0
def KL_div_loss(y_true, y_pred, d):
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    y_pred = R.clip(y_pred, R.epsilon(), R.Saclar(1) - R.epsilon())

    return R.elemul(y_true, R.natlog(R.div(y_true, y_pred)))
Example #3
0
def sparse_cross_entropy(y_true, y_pred, with_logit=True):
    if with_logit:
        y_pred = softmax(y_pred)

    else:
        pass

    y_pred = R.clip(y_pred, R.epsilon(), R.div(R.Scalar(1), R.epsilon()))
    N = y_pred.shape[0]
    loss = R.elemul(R.Scalar(-1), R.div(R.sum(R.natlog(y_pred[R.len(y_pred), y_true])), R.Scalar(N)))

    return loss
Example #4
0
def one_hot_cross_entropy(y_true, y_pred, with_logit=True):
    if with_logit:
        y_pred = softmax(y_pred)

    else:
        pass

    y_pred = R.clip(y_pred, R.epsilon(), R.div(R.Scalar(1), R.epsilon()))
    N = y_pred.shape[0]
    loss = R.div(R.elemul(R.Scalar(-1), R.mul(R.sum(y_true, R.natlog(R.add(y_pred, 1e-9))))), R.Scalar(N))

    return loss
Example #5
0
def log_loss(y_true, y_pred, with_logit=True):
    if with_logit:
        y_pred = sigmoid(y_pred)

    else:
        pass

    y_pred = R.clip(y_pred, R.epsilon(), R.sub(R.Scalar(1), R.epsilon()))
    loss = R.elemul(R.Scalar(-1), R.mean(R.elemul(y_true, R.natlog(y_pred)),
                                         R.elemul((R.sub(R.Scalar(1), y_true)), R.natlog(R.sub(R.Scalar(1), y_pred)))))

    return loss
def r2_score(y_true, y_pred):

  if not isinstance(y_true, R.Tensor):
      y_true = R.Tensor(y_true)
  if not isinstance(y_pred, R.Tensor):
      y_pred = R.Tensor(y_pred)    
  
  scalar1 = R.Scalar(1)    
        
  SS_res = R.sum(R.square(R.sub(y_true, y_pred)))
  SS_tot = R.sum(R.square(R.sub(y_true, R.mean(y_true))))  

  return R.sub(scalar1, R.div(SS_res, R.add(SS_tot, R.epsilon())))