Example #1
0
def sort_impl(
    blocks: BlockList, clear_input_blocks: bool, key: SortKeyT, descending: bool = False
) -> Tuple[BlockList, dict]:
    stage_info = {}
    blocks_list = blocks.get_blocks()
    if len(blocks_list) == 0:
        return BlockList([], []), stage_info

    if isinstance(key, str):
        key = [(key, "descending" if descending else "ascending")]

    if isinstance(key, list):
        descending = key[0][1] == "descending"

    num_mappers = len(blocks_list)
    # Use same number of output partitions.
    num_reducers = num_mappers
    # TODO(swang): sample_boundaries could be fused with a previous stage.
    boundaries = sample_boundaries(blocks_list, key, num_reducers)
    if descending:
        boundaries.reverse()

    context = DatasetContext.get_current()
    if context.use_push_based_shuffle:
        sort_op_cls = PushBasedSortOp
    else:
        sort_op_cls = SimpleSortOp
    sort_op = sort_op_cls(
        map_args=[boundaries, key, descending], reduce_args=[key, descending]
    )
    return sort_op.execute(
        blocks,
        num_reducers,
        clear_input_blocks,
    )
Example #2
0
    def execute(
        self,
        input_blocks: BlockList,
        output_num_blocks: int,
        clear_input_blocks: bool,
        *,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str, Any]] = None,
    ) -> Tuple[BlockList, Dict[str, List[BlockMetadata]]]:
        input_blocks_list = input_blocks.get_blocks()
        input_num_blocks = len(input_blocks_list)

        if map_ray_remote_args is None:
            map_ray_remote_args = {}
        if reduce_ray_remote_args is None:
            reduce_ray_remote_args = {}
        if "scheduling_strategy" not in reduce_ray_remote_args:
            reduce_ray_remote_args = reduce_ray_remote_args.copy()
            reduce_ray_remote_args["scheduling_strategy"] = "SPREAD"

        shuffle_map = cached_remote_fn(self.map)
        shuffle_reduce = cached_remote_fn(self.reduce)

        map_bar = ProgressBar("Shuffle Map", total=input_num_blocks)

        shuffle_map_out = [
            shuffle_map.options(
                **map_ray_remote_args,
                num_returns=1 + output_num_blocks,
            ).remote(i, block, output_num_blocks, *self._map_args)
            for i, block in enumerate(input_blocks_list)
        ]

        # The first item returned is the BlockMetadata.
        shuffle_map_metadata = []
        for i, refs in enumerate(shuffle_map_out):
            shuffle_map_metadata.append(refs[0])
            shuffle_map_out[i] = refs[1:]

        # Eagerly delete the input block references in order to eagerly release
        # the blocks' memory.
        del input_blocks_list
        if clear_input_blocks:
            input_blocks.clear()
        shuffle_map_metadata = map_bar.fetch_until_complete(
            shuffle_map_metadata)
        map_bar.close()

        reduce_bar = ProgressBar("Shuffle Reduce", total=output_num_blocks)
        shuffle_reduce_out = [
            shuffle_reduce.options(
                **reduce_ray_remote_args,
                num_returns=2,
            ).remote(
                *self._reduce_args,
                *[shuffle_map_out[i][j] for i in range(input_num_blocks)],
            ) for j in range(output_num_blocks)
        ]
        # Eagerly delete the map block references in order to eagerly release
        # the blocks' memory.
        del shuffle_map_out
        new_blocks, new_metadata = zip(*shuffle_reduce_out)
        new_metadata = reduce_bar.fetch_until_complete(list(new_metadata))
        reduce_bar.close()

        stats = {
            "map": shuffle_map_metadata,
            "reduce": new_metadata,
        }

        return BlockList(list(new_blocks), list(new_metadata)), stats
Example #3
0
    def execute(
        self,
        input_blocks: BlockList,
        output_num_blocks: int,
        clear_input_blocks: bool,
        *,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str, Any]] = None,
        merge_factor: int = 2,
    ) -> Tuple[BlockList, Dict[str, List[BlockMetadata]]]:
        logger.info("Using experimental push-based shuffle.")
        # TODO(swang): For jobs whose reduce work is heavier than the map work,
        # we should support fractional merge factors.
        # TODO(swang): For large jobs, we should try to choose the merge factor
        # automatically, e.g., by running one test round of map and merge tasks
        # and comparing their run times.
        # TODO(swang): Add option to automatically reduce write amplification
        # during map-merge stage, by limiting how many partitions can be
        # processed concurrently.
        input_blocks_list = input_blocks.get_blocks()
        # Preemptively clear the blocks list since we will incrementally delete
        # the last remaining references as we submit the dependent map tasks
        # during the map-merge stage.
        if clear_input_blocks:
            input_blocks.clear()

        if map_ray_remote_args is None:
            map_ray_remote_args = {}
        if reduce_ray_remote_args is None:
            reduce_ray_remote_args = {}
        # The placement strategy for reduce tasks is overwritten to colocate
        # them with their inputs from the merge stage, so remove any
        # pre-specified scheduling strategy here.
        reduce_ray_remote_args = reduce_ray_remote_args.copy()
        reduce_ray_remote_args.pop("scheduling_strategy", None)

        map_fn = self._map_partition
        merge_fn = self._merge

        def map_partition(*args, **kwargs):
            return map_fn(self.map, *args, **kwargs)

        def merge(*args, **kwargs):
            return merge_fn(self.reduce, *args, **kwargs)

        shuffle_map = cached_remote_fn(map_partition)
        shuffle_merge = cached_remote_fn(merge)

        def submit_map_task(arg):
            mapper_idx, block = arg
            # NOTE(swang): Results are shuffled between map and merge tasks, so
            # there is no advantage to colocating specific map and merge tasks.
            # Therefore, we do not specify a node affinity policy for map tasks
            # in case the caller or Ray has a better scheduling strategy, e.g.,
            # based on data locality.
            map_result = shuffle_map.options(
                **map_ray_remote_args,
                num_returns=1 + schedule.num_merge_tasks_per_round,
            ).remote(
                mapper_idx,
                block,
                output_num_blocks,
                schedule,
                *self._map_args,
            )
            metadata_ref = map_result.pop(0)
            return metadata_ref, map_result

        def submit_merge_task(arg):
            merge_idx, map_results = arg
            num_merge_returns = schedule.get_num_reducers_per_merge_idx(merge_idx)
            merge_result = shuffle_merge.options(
                num_returns=1 + num_merge_returns,
                **schedule.get_merge_task_options(merge_idx),
            ).remote(
                *map_results,
                reduce_args=self._reduce_args,
            )
            metadata_ref = merge_result.pop(0)
            return metadata_ref, merge_result

        # Compute all constants used for task scheduling.
        num_cpus_per_node_map = _get_num_cpus_per_node_map()
        schedule = self._compute_shuffle_schedule(
            num_cpus_per_node_map,
            len(input_blocks_list),
            merge_factor,
            output_num_blocks,
        )

        # ObjectRef results from the last round of tasks. Used to add
        # backpressure during pipelining of map and merge tasks.
        last_map_metadata_results = []
        last_merge_metadata_results = []
        # Final outputs from the map-merge stage.
        # This is a map from merge task index to a nested list of merge results
        # (ObjectRefs). Each merge task index corresponds to a partition of P
        # final reduce tasks.
        all_merge_results = [[] for _ in range(schedule.num_merge_tasks_per_round)]
        shuffle_map_metadata = []
        shuffle_merge_metadata = []
        map_bar = ProgressBar("Shuffle Map", position=0, total=len(input_blocks_list))

        # Execute the map-merge stage. This submits tasks in rounds of M map
        # tasks and N merge tasks each. Task execution between map and merge is
        # pipelined, so that while executing merge for one round of inputs, we
        # also execute the map tasks for the following round.
        input_blocks_list = list(enumerate(input_blocks_list))
        while input_blocks_list:
            # Execute one round of the map stage.
            # Pop from the inputs so that we can clear the memory ASAP.
            round_input_blocks = []
            try:
                for _ in range(schedule.num_map_tasks_per_round):
                    round_input_blocks.append(input_blocks_list.pop(0))
            except IndexError:
                pass
            (
                prev_map_metadata,
                last_map_metadata_results,
                map_results,
            ) = _execute_pipelined_stage(
                submit_map_task,
                last_map_metadata_results,
                round_input_blocks,
                progress_bar=map_bar,
            )
            shuffle_map_metadata += prev_map_metadata

            # Shuffle the map results for the merge tasks.
            merge_args = [
                (merge_idx, [map_result.pop(0) for map_result in map_results])
                for merge_idx in range(schedule.num_merge_tasks_per_round)
            ]
            assert all([not map_result for map_result in map_results])
            # Execute one round of the merge stage.
            (
                prev_merge_metadata,
                last_merge_metadata_results,
                merge_results,
            ) = _execute_pipelined_stage(
                submit_merge_task,
                last_merge_metadata_results,
                merge_args,
            )
            shuffle_merge_metadata += prev_merge_metadata
            for merge_idx, merge_result in enumerate(merge_results):
                all_merge_results[merge_idx].append(merge_result)
            del merge_results

        # Wait for last map and merge tasks to finish.
        prev_map_metadata, _, _ = _execute_pipelined_stage(
            None, last_map_metadata_results, [], progress_bar=map_bar
        )
        shuffle_map_metadata += prev_map_metadata
        map_bar.close()
        prev_merge_metadata, _, _ = _execute_pipelined_stage(
            None, last_merge_metadata_results, []
        )
        shuffle_merge_metadata += prev_merge_metadata

        # Execute and wait for the reduce stage.
        new_metadata, new_blocks = self._execute_reduce_stage(
            output_num_blocks, schedule, reduce_ray_remote_args, all_merge_results
        )

        stats = {
            "map": shuffle_map_metadata,
            "merge": shuffle_merge_metadata,
            "reduce": new_metadata,
        }

        return BlockList(list(new_blocks), list(new_metadata)), stats
Example #4
0
    def execute(
        self,
        input_blocks: BlockList,
        output_num_blocks: int,
        clear_input_blocks: bool,
        *,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str, Any]] = None,
        merge_factor: int = 2,
    ) -> Tuple[BlockList, Dict[str, List[BlockMetadata]]]:
        logger.info("Using experimental push-based shuffle.")
        # TODO(swang): For jobs whose reduce work is heavier than the map work,
        # we should support fractional merge factors.
        # TODO(swang): For large jobs, we should try to choose the merge factor
        # automatically, e.g., by running one test round of map and merge tasks
        # and comparing their run times.
        # TODO(swang): Add option to automatically reduce write amplification
        # during map-merge stage, by limiting how many partitions can be
        # processed concurrently.
        input_blocks_list = input_blocks.get_blocks()
        # Preemptively clear the blocks list since we will incrementally delete
        # the last remaining references as we submit the dependent map tasks
        # during the map-merge stage.
        if clear_input_blocks:
            input_blocks.clear()

        if map_ray_remote_args is None:
            map_ray_remote_args = {}
        if reduce_ray_remote_args is None:
            reduce_ray_remote_args = {}
        # The placement strategy for reduce tasks is overwritten to colocate
        # them with their inputs from the merge stage, so remove any
        # pre-specified scheduling strategy here.
        reduce_ray_remote_args = reduce_ray_remote_args.copy()
        reduce_ray_remote_args.pop("scheduling_strategy", None)

        # Compute all constants used for task scheduling.
        num_cpus_per_node_map = _get_num_cpus_per_node_map()
        stage = self._compute_shuffle_schedule(
            num_cpus_per_node_map,
            len(input_blocks_list),
            merge_factor,
            output_num_blocks,
        )

        map_fn = self._map_partition
        merge_fn = self._merge

        def map_partition(*args, **kwargs):
            return map_fn(self.map, *args, **kwargs)

        def merge(*args, **kwargs):
            return merge_fn(self.reduce, *args, **kwargs)

        shuffle_map = cached_remote_fn(map_partition)
        shuffle_map = shuffle_map.options(
            **map_ray_remote_args,
            num_returns=1 + stage.num_merge_tasks_per_round,
        )

        map_stage_iter = _MapStageIterator(
            input_blocks_list,
            shuffle_map,
            [output_num_blocks, stage.merge_schedule, *self._map_args],
        )
        map_bar = ProgressBar("Shuffle Map",
                              position=0,
                              total=len(input_blocks_list))
        map_stage_executor = _PipelinedStageExecutor(
            map_stage_iter,
            stage.num_map_tasks_per_round,
            progress_bar=map_bar)

        shuffle_merge = cached_remote_fn(merge)
        merge_stage_iter = _MergeStageIterator(map_stage_iter, shuffle_merge,
                                               stage, self._reduce_args)
        merge_stage_executor = _PipelinedStageExecutor(
            merge_stage_iter,
            stage.num_merge_tasks_per_round,
            max_concurrent_rounds=2)

        # Execute the map-merge stage. This submits tasks in rounds of M map
        # tasks and N merge tasks each. Task execution between map and merge is
        # pipelined, so that while executing merge for one round of inputs, we
        # also execute the map tasks for the following round.
        map_done = False
        merge_done = False
        map_stage_metadata = []
        merge_stage_metadata = []
        while not (map_done and merge_done):
            try:
                map_stage_metadata += next(map_stage_executor)
            except StopIteration:
                map_done = True
                break

            try:
                merge_stage_metadata += next(merge_stage_executor)
            except StopIteration:
                merge_done = True
                break

        map_bar.close()
        all_merge_results = merge_stage_iter.pop_merge_results()

        # Execute and wait for the reduce stage.
        reduce_bar = ProgressBar("Shuffle Reduce", total=output_num_blocks)
        shuffle_reduce = cached_remote_fn(self.reduce)
        reduce_stage_iter = _ReduceStageIterator(
            stage,
            shuffle_reduce,
            all_merge_results,
            reduce_ray_remote_args,
            self._reduce_args,
        )

        max_reduce_tasks_in_flight = output_num_blocks
        ctx = DatasetContext.get_current()
        if ctx.pipeline_push_based_shuffle_reduce_tasks:
            # If pipelining is enabled, we should still try to utilize all
            # cores.
            max_reduce_tasks_in_flight = min(
                max_reduce_tasks_in_flight,
                sum(num_cpus_per_node_map.values()))

        reduce_stage_executor = _PipelinedStageExecutor(
            reduce_stage_iter,
            max_reduce_tasks_in_flight,
            max_concurrent_rounds=2,
            progress_bar=reduce_bar,
        )
        reduce_stage_metadata = []
        while True:
            try:
                reduce_stage_metadata += next(reduce_stage_executor)
            except StopIteration:
                break

        new_blocks = reduce_stage_iter.pop_reduce_results()
        sorted_blocks = [(block[0], block[1], reduce_stage_metadata[i])
                         for i, block in enumerate(new_blocks)]
        sorted_blocks.sort(key=lambda x: x[0])
        _, new_blocks, reduce_stage_metadata = zip(*sorted_blocks)
        del sorted_blocks

        assert (
            len(new_blocks) == output_num_blocks
        ), f"Expected {output_num_blocks} outputs, produced {len(new_blocks)}"
        reduce_bar.close()

        stats = {
            "map": map_stage_metadata,
            "merge": merge_stage_metadata,
            "reduce": reduce_stage_metadata,
        }

        return BlockList(list(new_blocks), list(reduce_stage_metadata)), stats