Example #1
0
    def _apply(
        self,
        fn: Any,
        remote_args: dict,
        block_list: BlockList,
        clear_input_blocks: bool,
        name: Optional[str] = None,
    ) -> BlockList:
        """Note: this is not part of the Dataset public API."""
        context = DatasetContext.get_current()

        blocks_in = block_list.get_blocks_with_metadata()

        # Early release block references.
        if clear_input_blocks:
            block_list.clear()

        orig_num_blocks = len(blocks_in)
        results = []
        if name is None:
            name = "map"
        name = name.title()
        map_bar = ProgressBar(name, total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def map_block_split(self, block: Block,
                                input_files: List[str]) -> BlockPartition:
                return _map_block_split(block, fn, input_files)

            @ray.method(num_returns=2)
            def map_block_nosplit(
                    self, block: Block,
                    input_files: List[str]) -> Tuple[Block, BlockMetadata]:
                return _map_block_nosplit(block, fn, input_files)

        if not remote_args:
            remote_args["num_cpus"] = 1

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        workers = [BlockWorker.remote() for _ in range(self.min_size)]
        tasks = {w.ready.remote(): w for w in workers}
        tasks_in_flight = collections.defaultdict(int)
        metadata_mapping = {}
        block_indices = {}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks.keys()),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if (len(workers) < self.max_size
                        and len(ready_workers) / len(workers) > 0.8):
                    w = BlockWorker.remote()
                    workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks.pop(obj_id)

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                tasks_in_flight[worker] -= 1
                map_bar.update(1)
            else:
                ready_workers.add(worker)
                map_bar.set_description(
                    "Map Progress ({} actors {} pending)".format(
                        len(ready_workers),
                        len(workers) - len(ready_workers)))

            # Schedule a new task.
            while (blocks_in and tasks_in_flight[worker] <
                   self.max_tasks_in_flight_per_actor):
                block, meta = blocks_in.pop()
                if context.block_splitting_enabled:
                    ref = worker.map_block_split.remote(
                        block, meta.input_files)
                else:
                    ref, meta_ref = worker.map_block_nosplit.remote(
                        block, meta.input_files)
                    metadata_mapping[ref] = meta_ref
                tasks[ref] = worker
                block_indices[ref] = len(blocks_in)
                tasks_in_flight[worker] += 1

        map_bar.close()
        new_blocks, new_metadata = [], []
        # Put blocks in input order.
        results.sort(key=block_indices.get)
        if context.block_splitting_enabled:
            for result in ray.get(results):
                for block, metadata in result:
                    new_blocks.append(block)
                    new_metadata.append(metadata)
        else:
            for block in results:
                new_blocks.append(block)
                new_metadata.append(metadata_mapping[block])
            new_metadata = ray.get(new_metadata)
        return BlockList(new_blocks, new_metadata)
Example #2
0
    def apply(self, fn: Any, remote_args: dict,
              blocks: BlockList) -> BlockList:

        blocks_in = list(blocks.iter_blocks_with_metadata())
        orig_num_blocks = len(blocks_in)
        results = []
        map_bar = ProgressBar("Map Progress", total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def process_block(
                self, block: Block, input_files: List[str]
            ) -> Iterable[Tuple[Block, BlockMetadata]]:
                output = []
                for new_block in fn(block):
                    accessor = BlockAccessor.for_block(new_block)
                    new_metadata = BlockMetadata(
                        num_rows=accessor.num_rows(),
                        size_bytes=accessor.size_bytes(),
                        schema=accessor.schema(),
                        input_files=input_files)
                    owner = DatasetContext.get_current().block_owner
                    output.append((ray.put(new_block,
                                           _owner=owner), new_metadata))
                return output

        if not remote_args:
            remote_args["num_cpus"] = 1

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        self.workers = [BlockWorker.remote()]
        tasks = {w.ready.remote(): w for w in self.workers}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if len(ready_workers) / len(self.workers) > 0.8:
                    w = BlockWorker.remote()
                    self.workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(self.workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks[obj_id]
            del tasks[obj_id]

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                map_bar.update(1)
            else:
                ready_workers.add(worker)

            # Schedule a new task.
            if blocks_in:
                block, meta = blocks_in.pop()
                ref = worker.process_block.remote(block, meta.input_files)
                tasks[ref] = worker

        map_bar.close()
        new_blocks, new_metadata = [], []
        for result in ray.get(results):
            for block, metadata in result:
                new_blocks.append(block)
                new_metadata.append(metadata)
        return BlockList(new_blocks, new_metadata)
Example #3
0
    def apply(self, fn: Any, remote_args: dict,
              blocks: BlockList) -> BlockList:
        context = DatasetContext.get_current()

        blocks_in = blocks.get_blocks_with_metadata()
        orig_num_blocks = len(blocks_in)
        results = []
        map_bar = ProgressBar("Map Progress", total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def map_block_split(self, block: Block,
                                input_files: List[str]) -> BlockPartition:
                return _map_block_split(block, fn, input_files)

            @ray.method(num_returns=2)
            def map_block_nosplit(
                    self, block: Block,
                    input_files: List[str]) -> Tuple[Block, BlockMetadata]:
                return _map_block_nosplit(block, fn, input_files)

        if not remote_args:
            remote_args["num_cpus"] = 1

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        self.workers = [BlockWorker.remote()]
        tasks = {w.ready.remote(): w for w in self.workers}
        metadata_mapping = {}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if len(ready_workers) / len(self.workers) > 0.8:
                    w = BlockWorker.remote()
                    self.workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(self.workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks[obj_id]
            del tasks[obj_id]

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                map_bar.update(1)
            else:
                ready_workers.add(worker)

            # Schedule a new task.
            if blocks_in:
                block, meta = blocks_in.pop()
                if context.block_splitting_enabled:
                    ref = worker.map_block_split.remote(
                        block, meta.input_files)
                else:
                    ref, meta_ref = worker.map_block_nosplit.remote(
                        block, meta.input_files)
                    metadata_mapping[ref] = meta_ref
                tasks[ref] = worker

        map_bar.close()
        new_blocks, new_metadata = [], []
        if context.block_splitting_enabled:
            for result in ray.get(results):
                for block, metadata in result:
                    new_blocks.append(block)
                    new_metadata.append(metadata)
        else:
            for block in results:
                new_blocks.append(block)
                new_metadata.append(metadata_mapping[block])
        return BlockList(new_blocks, new_metadata)
Example #4
0
    def apply(self, fn: Any, remote_args: dict,
              blocks: Iterable[Block]) -> Iterable[ObjectRef[Block]]:

        map_bar = ProgressBar("Map Progress", total=len(blocks))

        class BlockWorker:
            def ready(self):
                return "ok"

            @ray.method(num_returns=2)
            def process_block(self, block: Block,
                              meta: BlockMetadata) -> (Block, BlockMetadata):
                new_block = fn(block)
                accessor = BlockAccessor.for_block(new_block)
                new_metadata = BlockMetadata(num_rows=accessor.num_rows(),
                                             size_bytes=accessor.size_bytes(),
                                             schema=accessor.schema(),
                                             input_files=meta.input_files)
                return new_block, new_metadata

        if not remote_args:
            remote_args["num_cpus"] = 1
        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        self.workers = [BlockWorker.remote()]
        metadata_mapping = {}
        tasks = {w.ready.remote(): w for w in self.workers}
        ready_workers = set()
        blocks_in = [(b, m) for (b, m) in zip(blocks, blocks.get_metadata())]
        blocks_out = []

        while len(blocks_out) < len(blocks):
            ready, _ = ray.wait(list(tasks),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if len(ready_workers) / len(self.workers) > 0.8:
                    w = BlockWorker.remote()
                    self.workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(self.workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks[obj_id]
            del tasks[obj_id]

            # Process task result.
            if worker in ready_workers:
                blocks_out.append(obj_id)
                map_bar.update(1)
            else:
                ready_workers.add(worker)

            # Schedule a new task.
            if blocks_in:
                block_ref, meta_ref = worker.process_block.remote(
                    *blocks_in.pop())
                metadata_mapping[block_ref] = meta_ref
                tasks[block_ref] = worker

        new_metadata = ray.get([metadata_mapping[b] for b in blocks_out])
        map_bar.close()
        return BlockList(blocks_out, new_metadata)