def __init__( self, base_iterable: Iterable[Callable[[], Dataset[T]]], stages: List[Callable[[Dataset[Any]], Dataset[Any]]] = None, length: int = None, progress_bars: bool = progress_bar._enabled, _executed: List[bool] = None, ): """Construct a DatasetPipeline (internal API). The constructor is not part of the DatasetPipeline API. Use the ``Dataset.repeat()``, ``Dataset.window()``, or ``DatasetPipeline.from_iterable()`` methods to construct a pipeline. """ self._base_iterable = base_iterable self._stages = stages or [] self._optimized_stages = None self._length = length self._progress_bars = progress_bars self._uuid = None # For testing only. # Whether the pipeline execution has started. # This variable is shared across all pipelines descending from this. self._executed = _executed or [False] self._dataset_iter = None self._first_dataset = None self._schema = None self._stats = DatasetPipelineStats()
class DatasetPipeline(Generic[T]): """Implements a pipeline of Datasets. Unlike Datasets, which execute all transformations synchronously, DatasetPipelines implement pipelined execution. This allows for the overlapped execution of data input (e.g., reading files), computation (e.g. feature preprocessing), and output (e.g., distributed ML training). A DatasetPipeline can be created by either repeating a Dataset (``ds.repeat(times=None)``), by turning a single Dataset into a pipeline (``ds.window(blocks_per_window=10)``), or defined explicitly using ``DatasetPipeline.from_iterable()``. DatasetPipeline supports the all the per-record transforms of Datasets (e.g., map, flat_map, filter), holistic transforms (e.g., repartition), and output methods (e.g., iter_rows, to_tf, to_torch, write_datasource). """ def __init__( self, base_iterable: Iterable[Callable[[], Dataset[T]]], stages: List[Callable[[Dataset[Any]], Dataset[Any]]] = None, length: int = None, progress_bars: bool = progress_bar._enabled, _executed: List[bool] = None, ): """Construct a DatasetPipeline (internal API). The constructor is not part of the DatasetPipeline API. Use the ``Dataset.repeat()``, ``Dataset.window()``, or ``DatasetPipeline.from_iterable()`` methods to construct a pipeline. """ self._base_iterable = base_iterable self._stages = stages or [] self._optimized_stages = None self._length = length self._progress_bars = progress_bars self._uuid = None # For testing only. # Whether the pipeline execution has started. # This variable is shared across all pipelines descending from this. self._executed = _executed or [False] self._dataset_iter = None self._first_dataset = None self._schema = None self._stats = DatasetPipelineStats() def iter_rows(self, *, prefetch_blocks: int = 0) -> Iterator[Union[T, TableRow]]: """Return a local row iterator over the data in the pipeline. If the dataset is a tabular dataset (Arrow/Pandas blocks), dict-like mappings :py:class:`~ray.data.row.TableRow` are yielded for each row by the iterator. If the dataset is not tabular, the raw row is yielded. Examples: >>> for i in ray.data.range(1000000).repeat(5).iter_rows(): ... print(i) Time complexity: O(1) Args: prefetch_blocks: The number of blocks to prefetch ahead of the current block during the scan. Returns: A local iterator over the records in the pipeline. """ def gen_rows() -> Iterator[Union[T, TableRow]]: time_start = time.perf_counter() for ds in self.iter_datasets(): wait_start = time.perf_counter() for row in ds.iter_rows(prefetch_blocks=prefetch_blocks): self._stats.iter_wait_s.add(time.perf_counter() - wait_start) with self._stats.iter_user_s.timer(): yield row wait_start = time.perf_counter() self._stats.iter_total_s.add(time.perf_counter() - time_start) return gen_rows() def iter_batches( self, *, prefetch_blocks: int = 0, batch_size: int = None, batch_format: str = "native", drop_last: bool = False, ) -> Iterator[BatchType]: """Return a local batched iterator over the data in the pipeline. Examples: >>> for pandas_df in ray.data.range(1000000).repeat(5).iter_batches(): ... print(pandas_df) Time complexity: O(1) Args: prefetch_blocks: The number of blocks to prefetch ahead of the current block during the scan. batch_size: Record batch size, or None to let the system pick. batch_format: The format in which to return each batch. Specify "native" to use the current block format (promoting Arrow to pandas automatically), "pandas" to select ``pandas.DataFrame`` or "pyarrow" to select ``pyarrow.Table``. Default is "native". drop_last: Whether to drop the last batch if it's incomplete. Returns: An iterator over record batches. """ time_start = time.perf_counter() yield from batch_blocks( self._iter_blocks(), self._stats, prefetch_blocks=prefetch_blocks, batch_size=batch_size, batch_format=batch_format, drop_last=drop_last, ) self._stats.iter_total_s.add(time.perf_counter() - time_start) def _iter_blocks(self) -> Iterator[Block]: ds_wait_start = time.perf_counter() for ds in self.iter_datasets(): self._stats.iter_ds_wait_s.add(time.perf_counter() - ds_wait_start) yield from ds._plan.execute().iter_blocks() ds_wait_start = time.perf_counter() def split( self, n: int, *, equal: bool = False, locality_hints: List[Any] = None ) -> List["DatasetPipeline[T]"]: """Split the pipeline into ``n`` disjoint pipeline shards. This returns a list of sub-pipelines that can be passed to Ray tasks and actors and used to read the pipeline records in parallel. Examples: >>> # Split up a pipeline to process over `n` worker actors. >>> shards = pipe.split(len(workers), locality_hints=workers) >>> for shard, worker in zip(shards, workers): ... worker.consume.remote(shard) Time complexity: O(1) Implementation detail: this launches a coordinator actor that is used to execute the pipeline and push data blocks to each pipeline shard. Reading from an individual shard will be blocked if other shards are falling behind. A warning will be printed if a shard has been blocked on read for more than 10 seconds. Args: n: Number of child pipelines to return. equal: Whether to guarantee each split has an equal number of records. This may drop records if they cannot be divided equally among the splits. locality_hints: A list of Ray actor handles of size ``n``. The system will try to co-locate the blocks of the ith pipeline shard with the ith actor to maximize data locality. Returns: A list of ``n`` disjoint pipeline splits. """ return self._split( n, lambda ds, equal=equal: ds.split( n, equal=equal, locality_hints=locality_hints ), ) def split_at_indices(self, indices: List[int]) -> List["DatasetPipeline[T]"]: """Split the datasets within the pipeline at the given indices (like np.split). This will split each dataset contained within this pipeline, thereby producing len(indices) + 1 pipelines with the first pipeline containing the [0, indices[0]) slice from each dataset, the second pipeline containing the [indices[0], indices[1]) slice from each dataset, and so on, with the final pipeline will containing the [indices[-1], self.count()) slice from each dataset. Examples: >>> p1, p2, p3 = ray.data.range( 8).repeat(2).split_at_indices([2, 5]) >>> p1.take() [0, 1, 0, 1] >>> p2.take() [2, 3, 4, 2, 3, 4] >>> p3.take() [5, 6, 7, 5, 6, 7] Time complexity: O(num splits) See also: ``DatasetPipeline.split`` Args: indices: List of sorted integers which indicate where the pipeline will be split. If an index exceeds the length of the pipeline, an empty pipeline will be returned. Returns: The pipeline splits. """ if len(indices) < 1: raise ValueError("indices must be at least of length 1") if sorted(indices) != indices: raise ValueError("indices must be sorted") if indices[0] < 0: raise ValueError("indices must be positive") return self._split(len(indices) + 1, lambda ds: ds.split_at_indices(indices)) def _split(self, n: int, splitter: Callable[[Dataset], "DatasetPipeline[T]"]): # Pin the coordinator (and any child actors) to the local node to avoid # errors during node failures. If the local node dies, then the driver # will fate-share with the coordinator anyway. local_node_resource = "node:{}".format(ray.util.get_node_ip_address()) coordinator = PipelineSplitExecutorCoordinator.options( resources={local_node_resource: 0.0001}, placement_group=None, ).remote(self, n, splitter, DatasetContext.get_current()) if self._executed[0]: raise RuntimeError("Pipeline cannot be read multiple times.") self._executed[0] = True class SplitIterator: def __init__(self, split_index, coordinator): self.split_index = split_index self.coordinator = coordinator self.warn_threshold = 100 self.wait_delay_s = 0.1 def __iter__(self): return self def __next__(self): ds = None tries = 0 while ds is None: ds = ray.get( self.coordinator.next_dataset_if_ready.remote(self.split_index) ) # Wait for other shards to catch up reading. if not ds: time.sleep(self.wait_delay_s) tries += 1 if tries > self.warn_threshold: print( "Warning: reader on shard {} of the pipeline " "has been blocked more than {}s waiting for " "other readers to catch up. All pipeline shards " "must be read from concurrently.".format( self.split_index, self.wait_delay_s * self.warn_threshold, ) ) self.warn_threshold *= 2 return lambda: ds return [ # Disable progress bars for the split readers since they would # overwhelm the console. DatasetPipeline( SplitIterator(idx, coordinator), length=self._length, progress_bars=False, ) for idx in range(n) ] def rewindow( self, *, blocks_per_window: int, preserve_epoch: bool = True ) -> "DatasetPipeline[T]": """Change the windowing (blocks per dataset) of this pipeline. Changes the windowing of this pipeline to the specified size. For example, if the current pipeline has two blocks per dataset, and `.rewindow(blocks_per_window=4)` is requested, adjacent datasets will be merged until each dataset is 4 blocks. If `.rewindow(blocks_per_window)` was requested the datasets will be split into smaller windows. Args: blocks_per_window: The new target blocks per window. preserve_epoch: Whether to preserve epoch boundaries. If set to False, then windows can contain data from two adjacent epochs. """ class WindowIterator: def __init__(self, original_iter): self._original_iter = original_iter self._buffer: Optional[Dataset[T]] = None def __next__(self) -> Dataset[T]: try: # Merge windows until we meet the requested window size. if self._buffer is None: self._buffer = next(self._original_iter) while self._buffer.num_blocks() < blocks_per_window: next_ds = next(self._original_iter) if ( preserve_epoch and self._buffer._get_epoch() != next_ds._get_epoch() ): partial_window = self._buffer self._buffer = next_ds return lambda: partial_window else: self._buffer = self._buffer.union(next_ds) # Slice off the left-most chunk and return it. res, self._buffer = self._buffer._divide(blocks_per_window) assert res.num_blocks() <= blocks_per_window, res if self._buffer.num_blocks() == 0: self._buffer = None return lambda: res except StopIteration: # Return the left-over data as a single window. if self._buffer and self._buffer.num_blocks() > 0: res = self._buffer assert res.num_blocks() <= blocks_per_window, res self._buffer = None return lambda: res else: raise class WindowIterable: def __init__(self, original_iter): self._original_iter = original_iter def __iter__(self): return WindowIterator(self._original_iter) if self._length == float("inf"): length = float("inf") else: length = None return DatasetPipeline(WindowIterable(self.iter_datasets()), length=length) def repeat(self, times: int = None) -> "DatasetPipeline[T]": """Repeat this pipeline a given number or times, or indefinitely. This operation is only allowed for pipelines of a finite length. An error will be raised for pipelines of infinite length. Note that every repeat of the pipeline is considered an "epoch" for the purposes of ``iter_epochs()``. If there are multiple repeat calls, the latest repeat takes precedence for the purpose of defining epochs. Args: times: The number of times to loop over this pipeline, or None to repeat indefinitely. """ if self._length == float("inf"): raise ValueError("Cannot repeat a pipeline of infinite length.") class RepeatIterator: def __init__(self, original_iter): self._original_iter = original_iter # Holds results to repeat. self._results = [] # Incrementing cursor over results. self._i = 0 # This is calculated later. self._max_i = None def __next__(self) -> Dataset[T]: # Still going through the original pipeline. if self._original_iter: try: make_ds = next(self._original_iter) self._results.append(make_ds) def gen(): res = make_ds() res._set_epoch(0) return res return gen except StopIteration: self._original_iter = None # Calculate the cursor limit. if times: self._max_i = len(self._results) * (times - 1) else: self._max_i = float("inf") # Going through a repeat of the pipeline. if self._i < self._max_i: make_ds = self._results[self._i % len(self._results)] epoch = 1 + self._i // len(self._results) def gen(): res = make_ds() res._set_epoch(epoch) return res self._i += 1 return gen else: raise StopIteration class RepeatIterable: def __init__(self, original_iter): self._original_iter = original_iter def __iter__(self): return RepeatIterator(self._original_iter) if not times: length = float("inf") elif times and self._length: length = times * self._length else: length = None return DatasetPipeline( RepeatIterable(iter(self._base_iterable)), stages=self._stages.copy(), length=length, ) def schema( self, fetch_if_missing: bool = False ) -> Union[type, "pyarrow.lib.Schema"]: """Return the schema of the dataset pipeline. For datasets of Arrow records, this will return the Arrow schema. For dataset of Python objects, this returns their Python type. Note: This is intended to be a method for peeking schema before the execution of DatasetPipeline. If execution has already started, it will simply return the cached schema from the previous call. Time complexity: O(1) Args: fetch_if_missing: If True, synchronously fetch the schema if it's not known. Default is False, where None is returned if the schema is not known. Returns: The Python type or Arrow schema of the records, or None if the schema is not known. """ if not self._executed[0]: self._schema = self._peek().schema(fetch_if_missing) return self._schema def count(self) -> int: """Count the number of records in the dataset pipeline. This blocks until the entire pipeline is fully executed. Time complexity: O(dataset size / parallelism) Returns: The number of records in the dataset pipeline. """ if self._length == float("inf"): raise ValueError("Cannot count a pipeline of infinite length.") pipe = self.map_batches(lambda batch: [len(batch)]) total = 0 for elem in pipe.iter_rows(): total += elem return total def sum(self) -> int: """Sum the records in the dataset pipeline. This blocks until the entire pipeline is fully executed. Time complexity: O(dataset size / parallelism) Returns: The sum of the records in the dataset pipeline. """ if self._length == float("inf"): raise ValueError("Cannot sum a pipeline of infinite length.") pipe = self.map_batches(lambda batch: [batch.sum()[0]], batch_format="pandas") total = 0 for elem in pipe.iter_rows(): total += elem return total def show_windows(self, limit_per_dataset: int = 10) -> None: """Print up to the given number of records from each window/dataset. This is helpful as a debugging tool for understanding the structure of dataset pipelines. Args: limit_per_dataset: Rows to print per window/dataset. """ epoch = None for i, ds in enumerate(self.iter_datasets()): if ds._get_epoch() != epoch: epoch = ds._get_epoch() print("------ Epoch {} ------".format(epoch)) print("=== Window {} ===".format(i)) ds.show(limit_per_dataset) def iter_epochs(self) -> Iterator["DatasetPipeline[T]"]: """Split this pipeline up by epoch. This allows reading of data per-epoch for repeated Datasets, which is useful for ML training. For example, ``ray.data.range(10).repeat(50)`` generates a pipeline with 500 rows total split across 50 epochs. This method allows iterating over the data individually per epoch (repetition) of the original data. Examples: >>> epochs = ray.data.range(10).repeat(50).iter_epochs() >>> for i, epoch in enumerate(epochs): ... print("Epoch", i) ... for row in epoch.iter_rows(): ... print(row) Returns: Iterator over epoch objects, where each epoch is a DatasetPipeline containing data from that epoch only. """ class Peekable: def __init__(self, base_iter: Iterator[T]): self._iter = base_iter self._buffer = None def _fill_buffer_if_possible(self): if self._buffer is None: try: self._buffer = next(self._iter) assert self._buffer is not None except StopIteration: pass def peek(self) -> T: self._fill_buffer_if_possible() if self._buffer is None: raise StopIteration return self._buffer def __next__(self) -> T: self._fill_buffer_if_possible() if self._buffer is None: raise StopIteration item = self._buffer self._buffer = None return item class SingleEpochIterator: def __init__(self, peekable_iter: Iterator[Dataset[T]], epoch: int): self._iter = peekable_iter self._epoch = epoch def __next__(self) -> Dataset[T]: if self._iter.peek()._get_epoch() > self._epoch: raise StopIteration ds = next(self._iter) return lambda: ds def __iter__(self): return self class EpochDelimitedIterator: def __init__(self, pipe): self._iter = Peekable(pipe.iter_datasets()) self._cur_epoch = None def __next__(self) -> "DatasetPipeline[T]": if self._cur_epoch is None: self._cur_epoch = self._iter.peek()._get_epoch() else: self._cur_epoch += 1 warned = False while self._iter.peek()._get_epoch() < self._cur_epoch: if not warned: warned = True logger.warn( "Data from epoch {} was not fully read, " "skipping to next epoch.".format(self._cur_epoch - 1) ) next(self._iter) epoch_pipe = DatasetPipeline.from_iterable( SingleEpochIterator(self._iter, epoch=self._cur_epoch) ) return epoch_pipe def __iter__(self): return self return EpochDelimitedIterator(self) @DeveloperAPI def iter_datasets(self) -> Iterator[Dataset[T]]: """Iterate over the output datasets of this pipeline. Returns: Iterator over the datasets outputted from this pipeline. """ if self._executed[0]: raise RuntimeError("Pipeline cannot be read multiple times.") self._executed[0] = True if self._first_dataset is None: self._peek() iter = itertools.chain([self._first_dataset], self._dataset_iter) self._first_dataset = None self._dataset_iter = None return iter @DeveloperAPI def foreach_window( self, fn: Callable[[Dataset[T]], Dataset[U]] ) -> "DatasetPipeline[U]": """Apply a transform to each dataset/window in this pipeline. Args: fn: The function to transform each dataset with. Returns: The transformed DatasetPipeline. """ if self._executed[0]: raise RuntimeError("Pipeline cannot be read multiple times.") return DatasetPipeline( self._base_iterable, self._stages + [fn], self._length, self._progress_bars, _executed=self._executed, ) def stats(self, exclude_first_window: bool = True) -> str: """Returns a string containing execution timing information. Args: exclude_first_window: Whether to exclude the first window from the pipeline time breakdown. This is generally a good idea since there is always a stall waiting for the first window to be initially computed, which can be misleading in the stats. """ return self._stats.summary_string(exclude_first_window) @staticmethod def from_iterable( iterable: Iterable[Callable[[], Dataset[T]]], ) -> "DatasetPipeline[T]": """Create a pipeline from an sequence of Dataset producing functions. Args: iterable: A finite or infinite-length sequence of functions that each produce a Dataset when called. """ if hasattr(iterable, "__len__"): length = len(iterable) else: length = None return DatasetPipeline(iterable, length=length) def __repr__(self) -> str: return "DatasetPipeline(num_windows={}, num_stages={})".format( self._length, 1 + len(self._stages) ) def __str__(self) -> str: return repr(self) def _get_uuid(self) -> str: return self._uuid def _set_uuid(self, uuid: str) -> None: self._uuid = uuid def _optimize_stages(self): """Optimize this pipeline, fusing stages together as possible.""" context = DatasetContext.get_current() if not context.optimize_fuse_stages: self._optimized_stages = self._stages return dummy_ds = Dataset( ExecutionPlan(BlockList([], []), DatasetStats(stages={}, parent=None)), 0, True, ) for stage in self._stages: dummy_ds = stage(dummy_ds) dummy_ds._plan._optimize() optimized_stages = [] for stage in dummy_ds._plan._stages: optimized_stages.append( lambda ds, stage=stage: Dataset( ds._plan.with_stage(stage), ds._epoch, True ) ) self._optimized_stages = optimized_stages def _peek(self) -> Dataset[T]: if self._first_dataset is None: self._optimize_stages() self._dataset_iter = PipelineExecutor(self) self._first_dataset = next(self._dataset_iter) return self._first_dataset