Example #1
0
    def test_bc_compilation_and_learning_from_offline_file(self):
        """Test whether a BCTrainer can be built with all frameworks.

        And learns from a historic-data file (while being evaluated on an
        actual env using evaluation_num_workers > 0).
        """
        rllib_dir = Path(__file__).parent.parent.parent.parent
        print("rllib dir={}".format(rllib_dir))
        data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json")
        print("data_file={} exists={}".format(data_file,
                                              os.path.isfile(data_file)))

        config = marwil.BC_DEFAULT_CONFIG.copy()
        config["num_workers"] = 0  # Run locally.

        config["evaluation_interval"] = 3
        config["evaluation_num_workers"] = 1
        config["evaluation_duration"] = 5
        config["evaluation_parallel_to_training"] = True
        # Evaluate on actual environment.
        config["evaluation_config"] = {"input": "sampler"}
        # Learn from offline data.
        config["input"] = [data_file]
        num_iterations = 350
        min_reward = 70.0

        # Test for all frameworks.
        for _ in framework_iterator(config, frameworks=("tf", "torch")):
            trainer = marwil.BCTrainer(config=config, env="CartPole-v0")
            learnt = False
            for i in range(num_iterations):
                results = trainer.train()
                check_train_results(results)
                print(results)

                eval_results = results.get("evaluation")
                if eval_results:
                    print("iter={} R={}".format(
                        i, eval_results["episode_reward_mean"]))
                    # Learn until good reward is reached in the actual env.
                    if eval_results["episode_reward_mean"] > min_reward:
                        print("learnt!")
                        learnt = True
                        break

            if not learnt:
                raise ValueError(
                    "BCTrainer did not reach {} reward from expert offline "
                    "data!".format(min_reward))

            check_compute_single_action(trainer,
                                        include_prev_action_reward=True)

            trainer.stop()
Example #2
0
def get_rl_agent(agent_name, config, env_to_agent):
    if agent_name == A2C:
        import ray.rllib.agents.a3c as a2c
        agent = a2c.A2CTrainer(config=config, env=env_to_agent)
    elif agent_name == A3C:
        import ray.rllib.agents.a3c as a3c
        agent = a3c.A3CTrainer(config=config, env=env_to_agent)
    elif agent_name == BC:
        import ray.rllib.agents.marwil as bc
        agent = bc.BCTrainer(config=config, env=env_to_agent)
    elif agent_name == DQN:
        import ray.rllib.agents.dqn as dqn
        agent = dqn.DQNTrainer(config=config, env=env_to_agent)
    elif agent_name == APEX_DQN:
        import ray.rllib.agents.dqn as dqn
        agent = dqn.ApexTrainer(config=config, env=env_to_agent)
    elif agent_name == IMPALA:
        import ray.rllib.agents.impala as impala
        agent = impala.ImpalaTrainer(config=config, env=env_to_agent)
    elif agent_name == MARWIL:
        import ray.rllib.agents.marwil as marwil
        agent = marwil.MARWILTrainer(config=config, env=env_to_agent)
    elif agent_name == PG:
        import ray.rllib.agents.pg as pg
        agent = pg.PGTrainer(config=config, env=env_to_agent)
    elif agent_name == PPO:
        import ray.rllib.agents.ppo as ppo
        agent = ppo.PPOTrainer(config=config, env=env_to_agent)
    elif agent_name == APPO:
        import ray.rllib.agents.ppo as ppo
        agent = ppo.APPOTrainer(config=config, env=env_to_agent)
    elif agent_name == SAC:
        import ray.rllib.agents.sac as sac
        agent = sac.SACTrainer(config=config, env=env_to_agent)
    elif agent_name == LIN_UCB:
        import ray.rllib.contrib.bandits.agents.lin_ucb as lin_ucb
        agent = lin_ucb.LinUCBTrainer(config=config, env=env_to_agent)
    elif agent_name == LIN_TS:
        import ray.rllib.contrib.bandits.agents.lin_ts as lin_ts
        agent = lin_ts.LinTSTrainer(config=config, env=env_to_agent)
    else:
        raise Exception("Not valid agent name")
    return agent
def get_rllib_agent(agent_name, env_name, env, env_to_agent):
    config = get_config(env_name, env, 1) if is_rllib_agent(agent_name) else {}
    if agent_name == RLLIB_A2C:
        import ray.rllib.agents.a3c as a2c
        agent = a2c.A2CTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_A3C:
        import ray.rllib.agents.a3c as a3c
        agent = a3c.A3CTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_BC:
        import ray.rllib.agents.marwil as bc
        agent = bc.BCTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_DQN:
        import ray.rllib.agents.dqn as dqn
        agent = dqn.DQNTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_APEX_DQN:
        import ray.rllib.agents.dqn as dqn
        agent = dqn.ApexTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_IMPALA:
        import ray.rllib.agents.impala as impala
        agent = impala.ImpalaTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_MARWIL:
        import ray.rllib.agents.marwil as marwil
        agent = marwil.MARWILTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_PG:
        import ray.rllib.agents.pg as pg
        agent = pg.PGTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_PPO:
        import ray.rllib.agents.ppo as ppo
        agent = ppo.PPOTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_APPO:
        import ray.rllib.agents.ppo as ppo
        agent = ppo.APPOTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_SAC:
        import ray.rllib.agents.sac as sac
        agent = sac.SACTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_LIN_UCB:
        import ray.rllib.contrib.bandits.agents.lin_ucb as lin_ucb
        agent = lin_ucb.LinUCBTrainer(config=config, env=env_to_agent)
    elif agent_name == RLLIB_LIN_TS:
        import ray.rllib.contrib.bandits.agents.lin_ts as lin_ts
        agent = lin_ts.LinTSTrainer(config=config, env=env_to_agent)
    return agent
Example #4
0
    def test_bc_compilation_and_learning_from_offline_file(self):
        """Test whether a BCTrainer can be built with all frameworks.

        And learns from a historic-data file.
        """
        rllib_dir = Path(__file__).parent.parent.parent.parent
        print("rllib dir={}".format(rllib_dir))
        data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json")
        print("data_file={} exists={}".format(data_file,
                                              os.path.isfile(data_file)))

        config = marwil.BC_DEFAULT_CONFIG.copy()
        config["num_workers"] = 0  # Run locally.
        config["evaluation_num_workers"] = 1
        config["evaluation_interval"] = 1
        # Evaluate on actual environment.
        config["evaluation_config"] = {"input": "sampler"}
        # Learn from offline data.
        config["input"] = [data_file]
        num_iterations = 300

        # Test for all frameworks.
        for _ in framework_iterator(config, frameworks=("tf", "torch")):
            trainer = marwil.BCTrainer(config=config, env="CartPole-v0")
            for i in range(num_iterations):
                eval_results = trainer.train()["evaluation"]
                print("iter={} R={}".format(
                    i, eval_results["episode_reward_mean"]))
                # Learn until some reward is reached on an actual live env.
                if eval_results["episode_reward_mean"] > 60.0:
                    print("learnt!")
                    break

            check_compute_single_action(trainer,
                                        include_prev_action_reward=True)

            trainer.stop()