Example #1
0
def test_json(monkeypatch, ray_start_4_cpus, make_temp_dir, workers_to_log,
              detailed, filename):
    if detailed:
        monkeypatch.setenv(ENABLE_DETAILED_AUTOFILLED_METRICS_ENV, "1")

    config = TestConfig()

    num_iters = 5
    num_workers = 4

    if workers_to_log is None:
        num_workers_to_log = num_workers
    elif isinstance(workers_to_log, int):
        num_workers_to_log = 1
    else:
        num_workers_to_log = len(workers_to_log)

    def train_func():
        for i in range(num_iters):
            train.report(index=i)
        return 1

    if filename is None:
        # if None, use default value
        callback = JsonLoggerCallback(workers_to_log=workers_to_log)
    else:
        callback = JsonLoggerCallback(filename=filename,
                                      workers_to_log=workers_to_log)
    trainer = Trainer(config, num_workers=num_workers, logdir=make_temp_dir)
    trainer.start()
    trainer.run(train_func, callbacks=[callback])
    if filename is None:
        assert str(
            callback.log_path.name) == JsonLoggerCallback._default_filename
    else:
        assert str(callback.log_path.name) == filename

    with open(callback.log_path, "r") as f:
        log = json.load(f)
    print(log)
    assert len(log) == num_iters
    assert len(log[0]) == num_workers_to_log
    assert all(len(element) == len(log[0]) for element in log)
    assert all(
        all(worker["index"] == worker[TRAINING_ITERATION] - 1
            for worker in element) for element in log)
    assert all(
        all(
            all(key in worker for key in BASIC_AUTOFILLED_KEYS)
            for worker in element) for element in log)
    if detailed:
        assert all(
            all(
                all(key in worker for key in DETAILED_AUTOFILLED_KEYS)
                for worker in element) for element in log)
    else:
        assert all(
            all(not any(key in worker for key in DETAILED_AUTOFILLED_KEYS)
                for worker in element) for element in log)
Example #2
0
def train_linear(num_workers=2, use_gpu=False, epochs=3):
    trainer = Trainer(backend="torch", num_workers=num_workers, use_gpu=use_gpu)
    config = {"lr": 1e-2, "hidden_size": 1, "batch_size": 4, "epochs": epochs}
    trainer.start()
    results = trainer.run(
        train_func, config, callbacks=[JsonLoggerCallback(), TBXLoggerCallback()]
    )
    trainer.shutdown()

    print(results)
    return results
Example #3
0
def train_linear(num_workers=2):
    trainer = Trainer(TorchConfig(backend="gloo"), num_workers=num_workers)
    config = {"lr": 1e-2, "hidden_size": 1, "batch_size": 4, "epochs": 3}
    trainer.start()
    results = trainer.run(
        train_func,
        config,
        callbacks=[JsonLoggerCallback(),
                   TBXLoggerCallback()])
    trainer.shutdown()

    print(results)
    return results
def train_fashion_mnist(num_workers=2, use_gpu=False):
    trainer = Trainer(
        backend="torch", num_workers=num_workers, use_gpu=use_gpu)
    trainer.start()
    result = trainer.run(
        train_func=train_func,
        config={
            "lr": 1e-3,
            "batch_size": 64,
            "epochs": 4
        },
        callbacks=[JsonLoggerCallback()])
    trainer.shutdown()
    print(f"Loss results: {result}")
Example #5
0
def train_linear(num_workers=2, use_gpu=False):
    datasets = get_datasets()

    trainer = Trainer("torch", num_workers=num_workers, use_gpu=use_gpu)
    config = {"lr": 1e-2, "hidden_size": 1, "batch_size": 4, "epochs": 3}
    trainer.start()
    results = trainer.run(
        train_func,
        config,
        dataset=datasets,
        callbacks=[JsonLoggerCallback(), TBXLoggerCallback()],
    )
    trainer.shutdown()
    print(results)
    return results