Example #1
0
def test_predict_feature_columns():
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=model, preprocessor=preprocessor)

    data_batch = np.array([[1, 2, 7], [3, 4, 8], [5, 6, 9]])
    predictions = predictor.predict(data_batch, feature_columns=[0, 1])

    assert len(predictions) == 3
    assert hasattr(predictor.get_preprocessor(), "_batch_transformed")
Example #2
0
def test_predict():
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=model, preprocessor=preprocessor)

    data_batch = np.array([[1, 2], [3, 4], [5, 6]])
    predictions = predictor.predict(data_batch)

    assert len(predictions) == 3
    assert hasattr(predictor.preprocessor, "_batch_transformed")
Example #3
0
def test_predict(batch_type):
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=model, preprocessor=preprocessor)

    raw_batch = pd.DataFrame([[1, 2], [3, 4], [5, 6]])
    data_batch = convert_pandas_to_batch_type(raw_batch,
                                              type=TYPE_TO_ENUM[batch_type])
    predictions = predictor.predict(data_batch)

    assert len(predictions) == 3
    assert hasattr(predictor.get_preprocessor(), "_batch_transformed")
Example #4
0
def test_predict_feature_columns_pandas():
    pandas_data = pd.DataFrame(dummy_data, columns=["A", "B"])
    pandas_target = pd.Series(dummy_target)
    pandas_model = (lgbm.LGBMClassifier(n_estimators=10).fit(
        pandas_data, pandas_target).booster_)
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=pandas_model,
                                  preprocessor=preprocessor)
    data_batch = pd.DataFrame(np.array([[1, 2, 7], [3, 4, 8], [5, 6, 9]]),
                              columns=["A", "B", "C"])
    predictions = predictor.predict(data_batch, feature_columns=["A", "B"])

    assert len(predictions) == 3
    assert hasattr(predictor.get_preprocessor(), "_batch_transformed")