Example #1
0
File: tune.py Project: ipark-CS/ray
def run(
    run_or_experiment,
    name=None,
    metric=None,
    mode=None,
    stop=None,
    time_budget_s=None,
    config=None,
    resources_per_trial=None,
    num_samples=1,
    local_dir=None,
    search_alg=None,
    scheduler=None,
    keep_checkpoints_num=None,
    checkpoint_score_attr=None,
    checkpoint_freq=0,
    checkpoint_at_end=False,
    verbose=2,
    progress_reporter=None,
    loggers=None,
    log_to_file=False,
    trial_name_creator=None,
    trial_dirname_creator=None,
    sync_config=None,
    export_formats=None,
    max_failures=0,
    fail_fast=False,
    restore=None,
    server_port=None,
    resume=False,
    reuse_actors=False,
    trial_executor=None,
    raise_on_failed_trial=True,
    # Deprecated args
    ray_auto_init=None,
    run_errored_only=None,
    queue_trials=None,
    global_checkpoint_period=None,
    with_server=None,
    upload_dir=None,
    sync_to_cloud=None,
    sync_to_driver=None,
    sync_on_checkpoint=None,
):
    """Executes training.

    Examples:

    .. code-block:: python

        # Run 10 trials (each trial is one instance of a Trainable). Tune runs
        # in parallel and automatically determines concurrency.
        tune.run(trainable, num_samples=10)

        # Run 1 trial, stop when trial has reached 10 iterations
        tune.run(my_trainable, stop={"training_iteration": 10})

        # automatically retry failed trials up to 3 times
        tune.run(my_trainable, stop={"training_iteration": 10}, max_failures=3)

        # Run 1 trial, search over hyperparameters, stop after 10 iterations.
        space = {"lr": tune.uniform(0, 1), "momentum": tune.uniform(0, 1)}
        tune.run(my_trainable, config=space, stop={"training_iteration": 10})

        # Resumes training if a previous machine crashed
        tune.run(my_trainable, config=space,
                 local_dir=<path/to/dir>, resume=True)

        # Rerun ONLY failed trials after an experiment is finished.
        tune.run(my_trainable, config=space,
                 local_dir=<path/to/dir>, resume="ERRORED_ONLY")

    Args:
        run_or_experiment (function | class | str | :class:`Experiment`): If
            function|class|str, this is the algorithm or model to train.
            This may refer to the name of a built-on algorithm
            (e.g. RLLib's DQN or PPO), a user-defined trainable
            function or class, or the string identifier of a
            trainable function or class registered in the tune registry.
            If Experiment, then Tune will execute training based on
            Experiment.spec. If you want to pass in a Python lambda, you
            will need to first register the function:
            ``tune.register_trainable("lambda_id", lambda x: ...)``. You can
            then use ``tune.run("lambda_id")``.
        metric (str): Metric to optimize. This metric should be reported
            with `tune.report()`. If set, will be passed to the search
            algorithm and scheduler.
        mode (str): Must be one of [min, max]. Determines whether objective is
            minimizing or maximizing the metric attribute. If set, will be
            passed to the search algorithm and scheduler.
        name (str): Name of experiment.
        stop (dict | callable | :class:`Stopper`): Stopping criteria. If dict,
            the keys may be any field in the return result of 'train()',
            whichever is reached first. If function, it must take (trial_id,
            result) as arguments and return a boolean (True if trial should be
            stopped, False otherwise). This can also be a subclass of
            ``ray.tune.Stopper``, which allows users to implement
            custom experiment-wide stopping (i.e., stopping an entire Tune
            run based on some time constraint).
        time_budget_s (int|float|datetime.timedelta): Global time budget in
            seconds after which all trials are stopped. Can also be a
            ``datetime.timedelta`` object.
        config (dict): Algorithm-specific configuration for Tune variant
            generation (e.g. env, hyperparams). Defaults to empty dict.
            Custom search algorithms may ignore this.
        resources_per_trial (dict): Machine resources to allocate per trial,
            e.g. ``{"cpu": 64, "gpu": 8}``. Note that GPUs will not be
            assigned unless you specify them here. Defaults to 1 CPU and 0
            GPUs in ``Trainable.default_resource_request()``.
        num_samples (int): Number of times to sample from the
            hyperparameter space. Defaults to 1. If `grid_search` is
            provided as an argument, the grid will be repeated
            `num_samples` of times.
        local_dir (str): Local dir to save training results to.
            Defaults to ``~/ray_results``.
        search_alg (Searcher): Search algorithm for optimization.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, HyperBand and PopulationBasedTraining. Refer to
            ray.tune.schedulers for more options.
        keep_checkpoints_num (int): Number of checkpoints to keep. A value of
            `None` keeps all checkpoints. Defaults to `None`. If set, need
            to provide `checkpoint_score_attr`.
        checkpoint_score_attr (str): Specifies by which attribute to rank the
            best checkpoint. Default is increasing order. If attribute starts
            with `min-` it will rank attribute in decreasing order, i.e.
            `min-validation_loss`.
        checkpoint_freq (int): How many training iterations between
            checkpoints. A value of 0 (default) disables checkpointing.
            This has no effect when using the Functional Training API.
        checkpoint_at_end (bool): Whether to checkpoint at the end of the
            experiment regardless of the checkpoint_freq. Default is False.
            This has no effect when using the Functional Training API.
        verbose (int): 0, 1, or 2. Verbosity mode. 0 = silent,
            1 = only status updates, 2 = status and trial results.
        progress_reporter (ProgressReporter): Progress reporter for reporting
            intermediate experiment progress. Defaults to CLIReporter if
            running in command-line, or JupyterNotebookReporter if running in
            a Jupyter notebook.
        loggers (list): List of logger creators to be used with
            each Trial. If None, defaults to ray.tune.logger.DEFAULT_LOGGERS.
            See `ray/tune/logger.py`.
        log_to_file (bool|str|Sequence): Log stdout and stderr to files in
            Tune's trial directories. If this is `False` (default), no files
            are written. If `true`, outputs are written to `trialdir/stdout`
            and `trialdir/stderr`, respectively. If this is a single string,
            this is interpreted as a file relative to the trialdir, to which
            both streams are written. If this is a Sequence (e.g. a Tuple),
            it has to have length 2 and the elements indicate the files to
            which stdout and stderr are written, respectively.
        trial_name_creator (Callable[[Trial], str]): Optional function
            for generating the trial string representation.
        trial_dirname_creator (Callable[[Trial], str]): Function
            for generating the trial dirname. This function should take
            in a Trial object and return a string representing the
            name of the directory. The return value cannot be a path.
        sync_config (SyncConfig): Configuration object for syncing. See
            tune.SyncConfig.
        export_formats (list): List of formats that exported at the end of
            the experiment. Default is None.
        max_failures (int): Try to recover a trial at least this many times.
            Ray will recover from the latest checkpoint if present.
            Setting to -1 will lead to infinite recovery retries.
            Setting to 0 will disable retries. Defaults to 3.
        fail_fast (bool | str): Whether to fail upon the first error.
            If fail_fast='raise' provided, Tune will automatically
            raise the exception received by the Trainable. fail_fast='raise'
            can easily leak resources and should be used with caution (it
            is best used with `ray.init(local_mode=True)`).
        restore (str): Path to checkpoint. Only makes sense to set if
            running 1 trial. Defaults to None.
        server_port (int): Port number for launching TuneServer.
        resume (str|bool): One of "LOCAL", "REMOTE", "PROMPT", "ERRORED_ONLY",
            or bool. LOCAL/True restores the checkpoint from the
            local_checkpoint_dir, determined
            by `name` and `local_dir`. REMOTE restores the checkpoint
            from remote_checkpoint_dir. PROMPT provides CLI feedback.
            False forces a new experiment. ERRORED_ONLY resets and reruns
            ERRORED trials upon resume - previous trial artifacts will
            be left untouched.  If resume is set but checkpoint does not exist,
            ValueError will be thrown.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.


    Returns:
        ExperimentAnalysis: Object for experiment analysis.

    Raises:
        TuneError: Any trials failed and `raise_on_failed_trial` is True.
    """
    if global_checkpoint_period:
        raise ValueError("global_checkpoint_period is deprecated. Set env var "
                         "'TUNE_GLOBAL_CHECKPOINT_S' instead.")
    if queue_trials:
        raise ValueError(
            "queue_trials is deprecated. "
            "Set env var 'TUNE_DISABLE_QUEUE_TRIALS=1' instead to "
            "disable queuing behavior.")
    if ray_auto_init:
        raise ValueError("ray_auto_init is deprecated. "
                         "Set env var 'TUNE_DISABLE_AUTO_INIT=1' instead or "
                         "call 'ray.init' before calling 'tune.run'.")
    if with_server:
        raise ValueError(
            "with_server is deprecated. It is now enabled by default "
            "if 'server_port' is not None.")
    if sync_on_checkpoint or sync_to_cloud or sync_to_driver or upload_dir:
        raise ValueError(
            "sync_on_checkpoint / sync_to_cloud / sync_to_driver / "
            "upload_dir must now be set via `tune.run("
            "sync_config=SyncConfig(...)`. See `ray.tune.SyncConfig` for "
            "more details.")

    if mode and mode not in ["min", "max"]:
        raise ValueError(
            "The `mode` parameter passed to `tune.run()` has to be one of "
            "['min', 'max']")

    config = config or {}
    sync_config = sync_config or SyncConfig()
    set_sync_periods(sync_config)

    trial_executor = trial_executor or RayTrialExecutor(
        reuse_actors=reuse_actors)
    if isinstance(run_or_experiment, list):
        experiments = run_or_experiment
    else:
        experiments = [run_or_experiment]

    for i, exp in enumerate(experiments):
        if not isinstance(exp, Experiment):
            experiments[i] = Experiment(
                name=name,
                run=exp,
                stop=stop,
                time_budget_s=time_budget_s,
                config=config,
                resources_per_trial=resources_per_trial,
                num_samples=num_samples,
                local_dir=local_dir,
                upload_dir=sync_config.upload_dir,
                sync_to_driver=sync_config.sync_to_driver,
                trial_name_creator=trial_name_creator,
                trial_dirname_creator=trial_dirname_creator,
                loggers=loggers,
                log_to_file=log_to_file,
                checkpoint_freq=checkpoint_freq,
                checkpoint_at_end=checkpoint_at_end,
                sync_on_checkpoint=sync_config.sync_on_checkpoint,
                keep_checkpoints_num=keep_checkpoints_num,
                checkpoint_score_attr=checkpoint_score_attr,
                export_formats=export_formats,
                max_failures=max_failures,
                restore=restore)
    else:
        logger.debug("Ignoring some parameters passed into tune.run.")

    if sync_config.sync_to_cloud:
        for exp in experiments:
            assert exp.remote_checkpoint_dir, (
                "Need `upload_dir` if `sync_to_cloud` given.")

    if fail_fast and max_failures != 0:
        raise ValueError("max_failures must be 0 if fail_fast=True.")

    if issubclass(type(search_alg), Searcher):
        search_alg = SearchGenerator(search_alg)

    if not search_alg:
        search_alg = BasicVariantGenerator()

    if config and not search_alg.set_search_properties(metric, mode, config):
        if has_unresolved_values(config):
            raise ValueError(
                "You passed a `config` parameter to `tune.run()` with "
                "unresolved parameters, but the search algorithm was already "
                "instantiated with a search space. Make sure that `config` "
                "does not contain any more parameter definitions - include "
                "them in the search algorithm's search space if necessary.")

    scheduler = scheduler or FIFOScheduler()
    if not scheduler.set_search_properties(metric, mode):
        raise ValueError(
            "You passed a `metric` or `mode` argument to `tune.run()`, but "
            "the scheduler you are using was already instantiated with their "
            "own `metric` and `mode` parameters. Either remove the arguments "
            "from your scheduler or from your call to `tune.run()`")

    runner = TrialRunner(
        search_alg=search_alg,
        scheduler=scheduler,
        local_checkpoint_dir=experiments[0].checkpoint_dir,
        remote_checkpoint_dir=experiments[0].remote_checkpoint_dir,
        sync_to_cloud=sync_config.sync_to_cloud,
        stopper=experiments[0].stopper,
        resume=resume,
        server_port=server_port,
        verbose=bool(verbose > 1),
        fail_fast=fail_fast,
        trial_executor=trial_executor)

    if not runner.resumed:
        for exp in experiments:
            search_alg.add_configurations([exp])
    else:
        logger.info("TrialRunner resumed, ignoring new add_experiment.")

    if progress_reporter is None:
        if IS_NOTEBOOK:
            progress_reporter = JupyterNotebookReporter(overwrite=verbose < 2)
        else:
            progress_reporter = CLIReporter()

    # User Warning for GPUs
    if trial_executor.has_gpus():
        if isinstance(resources_per_trial,
                      dict) and "gpu" in resources_per_trial:
            # "gpu" is manually set.
            pass
        elif _check_default_resources_override(experiments[0].run_identifier):
            # "default_resources" is manually overriden.
            pass
        else:
            logger.warning("Tune detects GPUs, but no trials are using GPUs. "
                           "To enable trials to use GPUs, set "
                           "tune.run(resources_per_trial={'gpu': 1}...) "
                           "which allows Tune to expose 1 GPU to each trial. "
                           "You can also override "
                           "`Trainable.default_resource_request` if using the "
                           "Trainable API.")

    while not runner.is_finished():
        runner.step()
        if verbose:
            _report_progress(runner, progress_reporter)

    try:
        runner.checkpoint(force=True)
    except Exception as e:
        logger.warning(f"Trial Runner checkpointing failed: {str(e)}")

    if verbose:
        _report_progress(runner, progress_reporter, done=True)

    wait_for_sync()
    runner.cleanup_trials()

    incomplete_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            incomplete_trials += [trial]

    if incomplete_trials:
        if raise_on_failed_trial:
            raise TuneError("Trials did not complete", incomplete_trials)
        else:
            logger.error("Trials did not complete: %s", incomplete_trials)

    trials = runner.get_trials()
    return ExperimentAnalysis(runner.checkpoint_file,
                              trials=trials,
                              default_metric=metric,
                              default_mode=mode)
Example #2
0
File: tune.py Project: ehu-ai/ray
def run(run_or_experiment,
        name=None,
        stop=None,
        config=None,
        resources_per_trial=None,
        num_samples=1,
        local_dir=None,
        upload_dir=None,
        trial_name_creator=None,
        loggers=None,
        log_to_file=False,
        sync_to_cloud=None,
        sync_to_driver=None,
        checkpoint_freq=0,
        checkpoint_at_end=False,
        sync_on_checkpoint=True,
        keep_checkpoints_num=None,
        checkpoint_score_attr=None,
        global_checkpoint_period=10,
        export_formats=None,
        max_failures=0,
        fail_fast=False,
        restore=None,
        search_alg=None,
        scheduler=None,
        with_server=False,
        server_port=TuneServer.DEFAULT_PORT,
        verbose=2,
        progress_reporter=None,
        resume=False,
        queue_trials=False,
        reuse_actors=False,
        trial_executor=None,
        raise_on_failed_trial=True,
        return_trials=False,
        ray_auto_init=True):
    """Executes training.

    Args:
        run_or_experiment (function | class | str | :class:`Experiment`): If
            function|class|str, this is the algorithm or model to train.
            This may refer to the name of a built-on algorithm
            (e.g. RLLib's DQN or PPO), a user-defined trainable
            function or class, or the string identifier of a
            trainable function or class registered in the tune registry.
            If Experiment, then Tune will execute training based on
            Experiment.spec. If you want to pass in a Python lambda, you
            will need to first register the function:
            ``tune.register_trainable("lambda_id", lambda x: ...)``. You can
            then use ``tune.run("lambda_id")``.
        name (str): Name of experiment.
        stop (dict | callable | :class:`Stopper`): Stopping criteria. If dict,
            the keys may be any field in the return result of 'train()',
            whichever is reached first. If function, it must take (trial_id,
            result) as arguments and return a boolean (True if trial should be
            stopped, False otherwise). This can also be a subclass of
            ``ray.tune.Stopper``, which allows users to implement
            custom experiment-wide stopping (i.e., stopping an entire Tune
            run based on some time constraint).
        config (dict): Algorithm-specific configuration for Tune variant
            generation (e.g. env, hyperparams). Defaults to empty dict.
            Custom search algorithms may ignore this.
        resources_per_trial (dict): Machine resources to allocate per trial,
            e.g. ``{"cpu": 64, "gpu": 8}``. Note that GPUs will not be
            assigned unless you specify them here. Defaults to 1 CPU and 0
            GPUs in ``Trainable.default_resource_request()``.
        num_samples (int): Number of times to sample from the
            hyperparameter space. Defaults to 1. If `grid_search` is
            provided as an argument, the grid will be repeated
            `num_samples` of times.
        local_dir (str): Local dir to save training results to.
            Defaults to ``~/ray_results``.
        upload_dir (str): Optional URI to sync training results and checkpoints
            to (e.g. ``s3://bucket`` or ``gs://bucket``).
        trial_name_creator (func): Optional function for generating
            the trial string representation.
        loggers (list): List of logger creators to be used with
            each Trial. If None, defaults to ray.tune.logger.DEFAULT_LOGGERS.
            See `ray/tune/logger.py`.
        log_to_file (bool|str|Sequence): Log stdout and stderr to files in
            Tune's trial directories. If this is `False` (default), no files
            are written. If `true`, outputs are written to `trialdir/stdout`
            and `trialdir/stderr`, respectively. If this is a single string,
            this is interpreted as a file relative to the trialdir, to which
            both streams are written. If this is a Sequence (e.g. a Tuple),
            it has to have length 2 and the elements indicate the files to
            which stdout and stderr are written, respectively.
        sync_to_cloud (func|str): Function for syncing the local_dir to and
            from upload_dir. If string, then it must be a string template that
            includes `{source}` and `{target}` for the syncer to run. If not
            provided, the sync command defaults to standard S3 or gsutil sync
            commands. By default local_dir is synced to remote_dir every 300
            seconds. To change this, set the TUNE_CLOUD_SYNC_S
            environment variable in the driver machine.
        sync_to_driver (func|str|bool): Function for syncing trial logdir from
            remote node to local. If string, then it must be a string template
            that includes `{source}` and `{target}` for the syncer to run.
            If True or not provided, it defaults to using rsync. If False,
            syncing to driver is disabled.
        checkpoint_freq (int): How many training iterations between
            checkpoints. A value of 0 (default) disables checkpointing.
            This has no effect when using the Functional Training API.
        checkpoint_at_end (bool): Whether to checkpoint at the end of the
            experiment regardless of the checkpoint_freq. Default is False.
            This has no effect when using the Functional Training API.
        sync_on_checkpoint (bool): Force sync-down of trial checkpoint to
            driver. If set to False, checkpoint syncing from worker to driver
            is asynchronous and best-effort. This does not affect persistent
            storage syncing. Defaults to True.
        keep_checkpoints_num (int): Number of checkpoints to keep. A value of
            `None` keeps all checkpoints. Defaults to `None`. If set, need
            to provide `checkpoint_score_attr`.
        checkpoint_score_attr (str): Specifies by which attribute to rank the
            best checkpoint. Default is increasing order. If attribute starts
            with `min-` it will rank attribute in decreasing order, i.e.
            `min-validation_loss`.
        global_checkpoint_period (int): Seconds between global checkpointing.
            This does not affect `checkpoint_freq`, which specifies frequency
            for individual trials.
        export_formats (list): List of formats that exported at the end of
            the experiment. Default is None.
        max_failures (int): Try to recover a trial at least this many times.
            Ray will recover from the latest checkpoint if present.
            Setting to -1 will lead to infinite recovery retries.
            Setting to 0 will disable retries. Defaults to 3.
        fail_fast (bool): Whether to fail upon the first error.
        restore (str): Path to checkpoint. Only makes sense to set if
            running 1 trial. Defaults to None.
        search_alg (Searcher): Search algorithm for optimization.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, HyperBand and PopulationBasedTraining. Refer to
            ray.tune.schedulers for more options.
        with_server (bool): Starts a background Tune server. Needed for
            using the Client API.
        server_port (int): Port number for launching TuneServer.
        verbose (int): 0, 1, or 2. Verbosity mode. 0 = silent,
            1 = only status updates, 2 = status and trial results.
        progress_reporter (ProgressReporter): Progress reporter for reporting
            intermediate experiment progress. Defaults to CLIReporter if
            running in command-line, or JupyterNotebookReporter if running in
            a Jupyter notebook.
        resume (str|bool): One of "LOCAL", "REMOTE", "PROMPT", or bool.
            LOCAL/True restores the checkpoint from the local_checkpoint_dir.
            REMOTE restores the checkpoint from remote_checkpoint_dir.
            PROMPT provides CLI feedback. False forces a new
            experiment. If resume is set but checkpoint does not exist,
            ValueError will be thrown.
        queue_trials (bool): Whether to queue trials when the cluster does
            not currently have enough resources to launch one. This should
            be set to True when running on an autoscaling cluster to enable
            automatic scale-up.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.
        ray_auto_init (bool): Automatically starts a local Ray cluster
            if using a RayTrialExecutor (which is the default) and
            if Ray is not initialized. Defaults to True.



    Returns:
        ExperimentAnalysis: Object for experiment analysis.

    Raises:
        TuneError: Any trials failed and `raise_on_failed_trial` is True.

    Examples:

    .. code-block:: python

        # Run 10 trials (each trial is one instance of a Trainable). Tune runs
        # in parallel and automatically determines concurrency.
        tune.run(trainable, num_samples=10)

        # Run 1 trial, stop when trial has reached 10 iterations
        tune.run(my_trainable, stop={"training_iteration": 10})

        # Run 1 trial, search over hyperparameters, stop after 10 iterations.
        space = {"lr": tune.uniform(0, 1), "momentum": tune.uniform(0, 1)}
        tune.run(my_trainable, config=space, stop={"training_iteration": 10})
    """
    config = config or {}

    trial_executor = trial_executor or RayTrialExecutor(
        queue_trials=queue_trials,
        reuse_actors=reuse_actors,
        ray_auto_init=ray_auto_init)
    if isinstance(run_or_experiment, list):
        experiments = run_or_experiment
    else:
        experiments = [run_or_experiment]

    for i, exp in enumerate(experiments):
        if not isinstance(exp, Experiment):
            experiments[i] = Experiment(
                name=name,
                run=exp,
                stop=stop,
                config=config,
                resources_per_trial=resources_per_trial,
                num_samples=num_samples,
                local_dir=local_dir,
                upload_dir=upload_dir,
                sync_to_driver=sync_to_driver,
                trial_name_creator=trial_name_creator,
                loggers=loggers,
                log_to_file=log_to_file,
                checkpoint_freq=checkpoint_freq,
                checkpoint_at_end=checkpoint_at_end,
                sync_on_checkpoint=sync_on_checkpoint,
                keep_checkpoints_num=keep_checkpoints_num,
                checkpoint_score_attr=checkpoint_score_attr,
                export_formats=export_formats,
                max_failures=max_failures,
                restore=restore)
    else:
        logger.debug("Ignoring some parameters passed into tune.run.")

    if sync_to_cloud:
        for exp in experiments:
            assert exp.remote_checkpoint_dir, (
                "Need `upload_dir` if `sync_to_cloud` given.")

    if fail_fast and max_failures != 0:
        raise ValueError("max_failures must be 0 if fail_fast=True.")

    if issubclass(type(search_alg), Searcher):
        search_alg = SearchGenerator(search_alg)

    if not search_alg:
        search_alg = BasicVariantGenerator()

    runner = TrialRunner(
        search_alg=search_alg,
        scheduler=scheduler or FIFOScheduler(),
        local_checkpoint_dir=experiments[0].checkpoint_dir,
        remote_checkpoint_dir=experiments[0].remote_checkpoint_dir,
        sync_to_cloud=sync_to_cloud,
        stopper=experiments[0].stopper,
        checkpoint_period=global_checkpoint_period,
        resume=resume,
        launch_web_server=with_server,
        server_port=server_port,
        verbose=bool(verbose > 1),
        fail_fast=fail_fast,
        trial_executor=trial_executor)

    if not runner.resumed:
        for exp in experiments:
            search_alg.add_configurations([exp])
    else:
        logger.info("TrialRunner resumed, ignoring new add_experiment.")

    if progress_reporter is None:
        if IS_NOTEBOOK:
            progress_reporter = JupyterNotebookReporter(overwrite=verbose < 2)
        else:
            progress_reporter = CLIReporter()

    # User Warning for GPUs
    if trial_executor.has_gpus():
        if isinstance(resources_per_trial,
                      dict) and "gpu" in resources_per_trial:
            # "gpu" is manually set.
            pass
        elif _check_default_resources_override(experiments[0].run_identifier):
            # "default_resources" is manually overriden.
            pass
        else:
            logger.warning("Tune detects GPUs, but no trials are using GPUs. "
                           "To enable trials to use GPUs, set "
                           "tune.run(resources_per_trial={'gpu': 1}...) "
                           "which allows Tune to expose 1 GPU to each trial. "
                           "You can also override "
                           "`Trainable.default_resource_request` if using the "
                           "Trainable API.")

    while not runner.is_finished():
        runner.step()
        if verbose:
            _report_progress(runner, progress_reporter)

    try:
        runner.checkpoint(force=True)
    except Exception:
        logger.exception("Trial Runner checkpointing failed.")

    if verbose:
        _report_progress(runner, progress_reporter, done=True)

    wait_for_sync()
    runner.cleanup_trials()

    incomplete_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            incomplete_trials += [trial]

    if incomplete_trials:
        if raise_on_failed_trial:
            raise TuneError("Trials did not complete", incomplete_trials)
        else:
            logger.error("Trials did not complete: %s", incomplete_trials)

    trials = runner.get_trials()
    if return_trials:
        return trials
    return ExperimentAnalysis(runner.checkpoint_file, trials=trials)
Example #3
0
def run(
        run_or_experiment: Union[str, Callable, Type],
        name: Optional[str] = None,
        metric: Optional[str] = None,
        mode: Optional[str] = None,
        stop: Union[None, Mapping, Stopper, Callable[[str, Mapping],
                                                     bool]] = None,
        time_budget_s: Union[None, int, float, datetime.timedelta] = None,
        config: Optional[Dict[str, Any]] = None,
        resources_per_trial: Union[None, Mapping[str, Union[
            float, int, Mapping]], PlacementGroupFactory] = None,
        num_samples: int = 1,
        local_dir: Optional[str] = None,
        search_alg: Optional[Union[Searcher, SearchAlgorithm]] = None,
        scheduler: Optional[TrialScheduler] = None,
        keep_checkpoints_num: Optional[int] = None,
        checkpoint_score_attr: Optional[str] = None,
        checkpoint_freq: int = 0,
        checkpoint_at_end: bool = False,
        verbose: Union[int, Verbosity] = Verbosity.V3_TRIAL_DETAILS,
        progress_reporter: Optional[ProgressReporter] = None,
        log_to_file: bool = False,
        trial_name_creator: Optional[Callable[[Trial], str]] = None,
        trial_dirname_creator: Optional[Callable[[Trial], str]] = None,
        sync_config: Optional[SyncConfig] = None,
        export_formats: Optional[Sequence] = None,
        max_failures: int = 0,
        fail_fast: bool = False,
        restore: Optional[str] = None,
        server_port: Optional[int] = None,
        resume: bool = False,
        queue_trials: bool = False,
        reuse_actors: bool = False,
        trial_executor: Optional[RayTrialExecutor] = None,
        raise_on_failed_trial: bool = True,
        callbacks: Optional[Sequence[Callback]] = None,
        # Deprecated args
        loggers: Optional[Sequence[Type[Logger]]] = None,
        ray_auto_init: Optional = None,
        run_errored_only: Optional = None,
        global_checkpoint_period: Optional = None,
        with_server: Optional = None,
        upload_dir: Optional = None,
        sync_to_cloud: Optional = None,
        sync_to_driver: Optional = None,
        sync_on_checkpoint: Optional = None,
        _remote: bool = None,
) -> ExperimentAnalysis:
    """Executes training.

    When a SIGINT signal is received (e.g. through Ctrl+C), the tuning run
    will gracefully shut down and checkpoint the latest experiment state.
    Sending SIGINT again (or SIGKILL/SIGTERM instead) will skip this step.

    Examples:

    .. code-block:: python

        # Run 10 trials (each trial is one instance of a Trainable). Tune runs
        # in parallel and automatically determines concurrency.
        tune.run(trainable, num_samples=10)

        # Run 1 trial, stop when trial has reached 10 iterations
        tune.run(my_trainable, stop={"training_iteration": 10})

        # automatically retry failed trials up to 3 times
        tune.run(my_trainable, stop={"training_iteration": 10}, max_failures=3)

        # Run 1 trial, search over hyperparameters, stop after 10 iterations.
        space = {"lr": tune.uniform(0, 1), "momentum": tune.uniform(0, 1)}
        tune.run(my_trainable, config=space, stop={"training_iteration": 10})

        # Resumes training if a previous machine crashed
        tune.run(my_trainable, config=space,
                 local_dir=<path/to/dir>, resume=True)

        # Rerun ONLY failed trials after an experiment is finished.
        tune.run(my_trainable, config=space,
                 local_dir=<path/to/dir>, resume="ERRORED_ONLY")

    Args:
        run_or_experiment (function | class | str | :class:`Experiment`): If
            function|class|str, this is the algorithm or model to train.
            This may refer to the name of a built-on algorithm
            (e.g. RLLib's DQN or PPO), a user-defined trainable
            function or class, or the string identifier of a
            trainable function or class registered in the tune registry.
            If Experiment, then Tune will execute training based on
            Experiment.spec. If you want to pass in a Python lambda, you
            will need to first register the function:
            ``tune.register_trainable("lambda_id", lambda x: ...)``. You can
            then use ``tune.run("lambda_id")``.
        metric (str): Metric to optimize. This metric should be reported
            with `tune.report()`. If set, will be passed to the search
            algorithm and scheduler.
        mode (str): Must be one of [min, max]. Determines whether objective is
            minimizing or maximizing the metric attribute. If set, will be
            passed to the search algorithm and scheduler.
        name (str): Name of experiment.
        stop (dict | callable | :class:`Stopper`): Stopping criteria. If dict,
            the keys may be any field in the return result of 'train()',
            whichever is reached first. If function, it must take (trial_id,
            result) as arguments and return a boolean (True if trial should be
            stopped, False otherwise). This can also be a subclass of
            ``ray.tune.Stopper``, which allows users to implement
            custom experiment-wide stopping (i.e., stopping an entire Tune
            run based on some time constraint).
        time_budget_s (int|float|datetime.timedelta): Global time budget in
            seconds after which all trials are stopped. Can also be a
            ``datetime.timedelta`` object.
        config (dict): Algorithm-specific configuration for Tune variant
            generation (e.g. env, hyperparams). Defaults to empty dict.
            Custom search algorithms may ignore this.
        resources_per_trial (dict|PlacementGroupFactory): Machine resources
            to allocate per trial, e.g. ``{"cpu": 64, "gpu": 8}``.
            Note that GPUs will not be assigned unless you specify them here.
            Defaults to 1 CPU and 0 GPUs in
            ``Trainable.default_resource_request()``. This can also
            be a PlacementGroupFactory object wrapping arguments to create a
            per-trial placement group.
        num_samples (int): Number of times to sample from the
            hyperparameter space. Defaults to 1. If `grid_search` is
            provided as an argument, the grid will be repeated
            `num_samples` of times. If this is -1, (virtually) infinite
            samples are generated until a stopping condition is met.
        local_dir (str): Local dir to save training results to.
            Defaults to ``~/ray_results``.
        search_alg (Searcher|SearchAlgorithm): Search algorithm for
            optimization.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, HyperBand and PopulationBasedTraining. Refer to
            ray.tune.schedulers for more options.
        keep_checkpoints_num (int): Number of checkpoints to keep. A value of
            `None` keeps all checkpoints. Defaults to `None`. If set, need
            to provide `checkpoint_score_attr`.
        checkpoint_score_attr (str): Specifies by which attribute to rank the
            best checkpoint. Default is increasing order. If attribute starts
            with `min-` it will rank attribute in decreasing order, i.e.
            `min-validation_loss`.
        checkpoint_freq (int): How many training iterations between
            checkpoints. A value of 0 (default) disables checkpointing.
            This has no effect when using the Functional Training API.
        checkpoint_at_end (bool): Whether to checkpoint at the end of the
            experiment regardless of the checkpoint_freq. Default is False.
            This has no effect when using the Functional Training API.
        verbose (Union[int, Verbosity]): 0, 1, 2, or 3. Verbosity mode.
            0 = silent, 1 = only status updates, 2 = status and brief trial
            results, 3 = status and detailed trial results. Defaults to 3.
        progress_reporter (ProgressReporter): Progress reporter for reporting
            intermediate experiment progress. Defaults to CLIReporter if
            running in command-line, or JupyterNotebookReporter if running in
            a Jupyter notebook.
        log_to_file (bool|str|Sequence): Log stdout and stderr to files in
            Tune's trial directories. If this is `False` (default), no files
            are written. If `true`, outputs are written to `trialdir/stdout`
            and `trialdir/stderr`, respectively. If this is a single string,
            this is interpreted as a file relative to the trialdir, to which
            both streams are written. If this is a Sequence (e.g. a Tuple),
            it has to have length 2 and the elements indicate the files to
            which stdout and stderr are written, respectively.
        trial_name_creator (Callable[[Trial], str]): Optional function
            for generating the trial string representation.
        trial_dirname_creator (Callable[[Trial], str]): Function
            for generating the trial dirname. This function should take
            in a Trial object and return a string representing the
            name of the directory. The return value cannot be a path.
        sync_config (SyncConfig): Configuration object for syncing. See
            tune.SyncConfig.
        export_formats (list): List of formats that exported at the end of
            the experiment. Default is None.
        max_failures (int): Try to recover a trial at least this many times.
            Ray will recover from the latest checkpoint if present.
            Setting to -1 will lead to infinite recovery retries.
            Setting to 0 will disable retries. Defaults to 0.
        fail_fast (bool | str): Whether to fail upon the first error.
            If fail_fast='raise' provided, Tune will automatically
            raise the exception received by the Trainable. fail_fast='raise'
            can easily leak resources and should be used with caution (it
            is best used with `ray.init(local_mode=True)`).
        restore (str): Path to checkpoint. Only makes sense to set if
            running 1 trial. Defaults to None.
        server_port (int): Port number for launching TuneServer.
        resume (str|bool): One of "LOCAL", "REMOTE", "PROMPT", "ERRORED_ONLY",
            or bool. LOCAL/True restores the checkpoint from the
            local_checkpoint_dir, determined
            by `name` and `local_dir`. REMOTE restores the checkpoint
            from remote_checkpoint_dir. PROMPT provides CLI feedback.
            False forces a new experiment. ERRORED_ONLY resets and reruns
            ERRORED trials upon resume - previous trial artifacts will
            be left untouched.  If resume is set but checkpoint does not exist,
            ValueError will be thrown.
        queue_trials (bool): Whether to queue trials when the cluster does
            not currently have enough resources to launch one. This should
            be set to True when running on an autoscaling cluster to enable
            automatic scale-up.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.
        callbacks (list): List of callbacks that will be called at different
            times in the training loop. Must be instances of the
            ``ray.tune.callback.Callback`` class. If not passed,
            `LoggerCallback` and `SyncerCallback` callbacks are automatically
            added.
        _remote (bool): Whether to run the Tune driver in a remote function.
            This is disabled automatically if a custom trial executor is
            passed in. This is enabled by default in Ray client mode.

    Returns:
        ExperimentAnalysis: Object for experiment analysis.

    Raises:
        TuneError: Any trials failed and `raise_on_failed_trial` is True.
    """

    if _remote is None:
        _remote = ray.util.client.ray.is_connected()

    if _remote is True and trial_executor:
        raise ValueError("cannot use custom trial executor")

    if not trial_executor or isinstance(trial_executor, RayTrialExecutor):
        _ray_auto_init()

    if _remote:
        return ray.get(
            ray.remote(num_cpus=0)(run).remote(
                run_or_experiment,
                name,
                metric,
                mode,
                stop,
                time_budget_s,
                config,
                resources_per_trial,
                num_samples,
                local_dir,
                search_alg,
                scheduler,
                keep_checkpoints_num,
                checkpoint_score_attr,
                checkpoint_freq,
                checkpoint_at_end,
                verbose,
                progress_reporter,
                log_to_file,
                trial_name_creator,
                trial_dirname_creator,
                sync_config,
                export_formats,
                max_failures,
                fail_fast,
                restore,
                server_port,
                resume,
                queue_trials,
                reuse_actors,
                trial_executor,
                raise_on_failed_trial,
                callbacks,
                # Deprecated args
                loggers,
                ray_auto_init,
                run_errored_only,
                global_checkpoint_period,
                with_server,
                upload_dir,
                sync_to_cloud,
                sync_to_driver,
                sync_on_checkpoint,
                _remote=False))

    all_start = time.time()
    if global_checkpoint_period:
        raise ValueError("global_checkpoint_period is deprecated. Set env var "
                         "'TUNE_GLOBAL_CHECKPOINT_S' instead.")
    if ray_auto_init:
        raise ValueError("ray_auto_init is deprecated. "
                         "Set env var 'TUNE_DISABLE_AUTO_INIT=1' instead or "
                         "call 'ray.init' before calling 'tune.run'.")
    if with_server:
        raise ValueError(
            "with_server is deprecated. It is now enabled by default "
            "if 'server_port' is not None.")
    if sync_on_checkpoint or sync_to_cloud or sync_to_driver or upload_dir:
        raise ValueError(
            "sync_on_checkpoint / sync_to_cloud / sync_to_driver / "
            "upload_dir must now be set via `tune.run("
            "sync_config=SyncConfig(...)`. See `ray.tune.SyncConfig` for "
            "more details.")

    if mode and mode not in ["min", "max"]:
        raise ValueError(
            "The `mode` parameter passed to `tune.run()` has to be one of "
            "['min', 'max']")

    set_verbosity(verbose)

    config = config or {}
    sync_config = sync_config or SyncConfig()
    set_sync_periods(sync_config)

    if num_samples == -1:
        num_samples = sys.maxsize

    trial_executor = trial_executor or RayTrialExecutor(
        reuse_actors=reuse_actors, queue_trials=queue_trials)
    if isinstance(run_or_experiment, list):
        experiments = run_or_experiment
    else:
        experiments = [run_or_experiment]

    for i, exp in enumerate(experiments):
        if not isinstance(exp, Experiment):
            experiments[i] = Experiment(
                name=name,
                run=exp,
                stop=stop,
                time_budget_s=time_budget_s,
                config=config,
                resources_per_trial=resources_per_trial,
                num_samples=num_samples,
                local_dir=local_dir,
                upload_dir=sync_config.upload_dir,
                sync_to_driver=sync_config.sync_to_driver,
                trial_name_creator=trial_name_creator,
                trial_dirname_creator=trial_dirname_creator,
                log_to_file=log_to_file,
                checkpoint_freq=checkpoint_freq,
                checkpoint_at_end=checkpoint_at_end,
                sync_on_checkpoint=sync_config.sync_on_checkpoint,
                keep_checkpoints_num=keep_checkpoints_num,
                checkpoint_score_attr=checkpoint_score_attr,
                export_formats=export_formats,
                max_failures=max_failures,
                restore=restore)
    else:
        logger.debug("Ignoring some parameters passed into tune.run.")

    if sync_config.sync_to_cloud:
        for exp in experiments:
            assert exp.remote_checkpoint_dir, (
                "Need `upload_dir` if `sync_to_cloud` given.")

    if fail_fast and max_failures != 0:
        raise ValueError("max_failures must be 0 if fail_fast=True.")

    if issubclass(type(search_alg), Searcher):
        search_alg = SearchGenerator(search_alg)

    if not search_alg:
        search_alg = BasicVariantGenerator()

    if config and not search_alg.set_search_properties(metric, mode, config):
        if has_unresolved_values(config):
            raise ValueError(
                "You passed a `config` parameter to `tune.run()` with "
                "unresolved parameters, but the search algorithm was already "
                "instantiated with a search space. Make sure that `config` "
                "does not contain any more parameter definitions - include "
                "them in the search algorithm's search space if necessary.")

    scheduler = scheduler or FIFOScheduler()
    if not scheduler.set_search_properties(metric, mode):
        raise ValueError(
            "You passed a `metric` or `mode` argument to `tune.run()`, but "
            "the scheduler you are using was already instantiated with their "
            "own `metric` and `mode` parameters. Either remove the arguments "
            "from your scheduler or from your call to `tune.run()`")

    # Create syncer callbacks
    callbacks = create_default_callbacks(
        callbacks, sync_config, metric=metric, loggers=loggers)

    runner = TrialRunner(
        search_alg=search_alg,
        scheduler=scheduler,
        local_checkpoint_dir=experiments[0].checkpoint_dir,
        remote_checkpoint_dir=experiments[0].remote_checkpoint_dir,
        sync_to_cloud=sync_config.sync_to_cloud,
        stopper=experiments[0].stopper,
        resume=resume,
        server_port=server_port,
        fail_fast=fail_fast,
        trial_executor=trial_executor,
        callbacks=callbacks,
        metric=metric)

    if not runner.resumed:
        for exp in experiments:
            search_alg.add_configurations([exp])
    else:
        logger.info("TrialRunner resumed, ignoring new add_experiment.")

    if progress_reporter is None:
        if IS_NOTEBOOK:
            progress_reporter = JupyterNotebookReporter(
                overwrite=not has_verbosity(Verbosity.V2_TRIAL_NORM))
        else:
            progress_reporter = CLIReporter()

    if not progress_reporter.set_search_properties(metric, mode):
        raise ValueError(
            "You passed a `metric` or `mode` argument to `tune.run()`, but "
            "the reporter you are using was already instantiated with their "
            "own `metric` and `mode` parameters. Either remove the arguments "
            "from your reporter or from your call to `tune.run()`")
    progress_reporter.set_total_samples(search_alg.total_samples)

    # User Warning for GPUs
    if trial_executor.has_gpus():
        if isinstance(resources_per_trial,
                      dict) and "gpu" in resources_per_trial:
            # "gpu" is manually set.
            pass
        elif _check_default_resources_override(experiments[0].run_identifier):
            # "default_resources" is manually overridden.
            pass
        else:
            logger.warning("Tune detects GPUs, but no trials are using GPUs. "
                           "To enable trials to use GPUs, set "
                           "tune.run(resources_per_trial={'gpu': 1}...) "
                           "which allows Tune to expose 1 GPU to each trial. "
                           "You can also override "
                           "`Trainable.default_resource_request` if using the "
                           "Trainable API.")

    original_handler = signal.getsignal(signal.SIGINT)
    state = {signal.SIGINT: False}

    def sigint_handler(sig, frame):
        logger.warning(
            "SIGINT received (e.g. via Ctrl+C), ending Ray Tune run. "
            "This will try to checkpoint the experiment state one last time. "
            "Press CTRL+C one more time (or send SIGINT/SIGKILL/SIGTERM) "
            "to skip. ")
        state[signal.SIGINT] = True
        # Restore original signal handler to react to future SIGINT signals
        signal.signal(signal.SIGINT, original_handler)

    if not int(os.getenv("TUNE_DISABLE_SIGINT_HANDLER", "0")):
        signal.signal(signal.SIGINT, sigint_handler)

    tune_start = time.time()
    while not runner.is_finished() and not state[signal.SIGINT]:
        runner.step()
        if has_verbosity(Verbosity.V1_EXPERIMENT):
            _report_progress(runner, progress_reporter)
    tune_taken = time.time() - tune_start

    try:
        runner.checkpoint(force=True)
    except Exception as e:
        logger.warning(f"Trial Runner checkpointing failed: {str(e)}")

    if has_verbosity(Verbosity.V1_EXPERIMENT):
        _report_progress(runner, progress_reporter, done=True)

    wait_for_sync()
    runner.cleanup_trials()

    incomplete_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            incomplete_trials += [trial]

    if incomplete_trials:
        if raise_on_failed_trial and not state[signal.SIGINT]:
            raise TuneError("Trials did not complete", incomplete_trials)
        else:
            logger.error("Trials did not complete: %s", incomplete_trials)

    all_taken = time.time() - all_start
    if has_verbosity(Verbosity.V1_EXPERIMENT):
        logger.info(f"Total run time: {all_taken:.2f} seconds "
                    f"({tune_taken:.2f} seconds for the tuning loop).")

    if state[signal.SIGINT]:
        logger.warning(
            "Experiment has been interrupted, but the most recent state was "
            "saved. You can continue running this experiment by passing "
            "`resume=True` to `tune.run()`")

    trials = runner.get_trials()
    return ExperimentAnalysis(
        runner.checkpoint_file,
        trials=trials,
        default_metric=metric,
        default_mode=mode)
Example #4
0
def run(args, parser):
    if args.config_file:
        with open(args.config_file) as f:
            experiments = yaml.safe_load(f)
    else:
        # Note: keep this in sync with tune/config_parser.py
        experiments = {
            args.experiment_name: {  # i.e. log to ~/ray_results/default
                "run": args.run,
                "checkpoint_freq": args.checkpoint_freq,
                "checkpoint_at_end": args.checkpoint_at_end,
                "keep_checkpoints_num": args.keep_checkpoints_num,
                "checkpoint_score_attr": args.checkpoint_score_attr,
                "local_dir": args.local_dir,
                "resources_per_trial": (
                    args.resources_per_trial
                    and resources_to_json(args.resources_per_trial)
                ),
                "stop": args.stop,
                "config": dict(args.config, env=args.env),
                "restore": args.restore,
                "num_samples": args.num_samples,
                "sync_config": {
                    "upload_dir": args.upload_dir,
                },
            }
        }

    # Ray UI.
    if args.no_ray_ui:
        deprecation_warning(old="--no-ray-ui", new="--ray-ui", error=False)
        args.ray_ui = False

    verbose = 1
    for exp in experiments.values():
        # Bazel makes it hard to find files specified in `args` (and `data`).
        # Look for them here.
        # NOTE: Some of our yaml files don't have a `config` section.
        input_ = exp.get("config", {}).get("input")

        if input_ and input_ != "sampler":
            # This script runs in the ray/rllib dir.
            rllib_dir = Path(__file__).parent

            def patch_path(path):
                if isinstance(path, list):
                    return [patch_path(i) for i in path]
                elif isinstance(path, dict):
                    return {
                        patch_path(k): patch_path(v)
                        for k, v in path.items()
                    }
                elif isinstance(path, str):
                    if os.path.exists(path):
                        return path
                    else:
                        abs_path = str(rllib_dir.absolute().joinpath(path))
                        return abs_path if os.path.exists(abs_path) else path
                else:
                    return path

            exp["config"]["input"] = patch_path(input_)

        if not exp.get("run"):
            parser.error("the following arguments are required: --run")
        if not exp.get("env") and not exp.get("config", {}).get("env"):
            parser.error("the following arguments are required: --env")

        if args.torch:
            deprecation_warning("--torch", "--framework=torch")
            exp["config"]["framework"] = "torch"
        elif args.eager:
            deprecation_warning("--eager", "--framework=[tf2|tfe]")
            exp["config"]["framework"] = "tfe"
        elif args.framework is not None:
            exp["config"]["framework"] = args.framework

        if args.trace:
            if exp["config"]["framework"] not in ["tf2", "tfe"]:
                raise ValueError("Must enable --eager to enable tracing.")
            exp["config"]["eager_tracing"] = True

        if args.v:
            exp["config"]["log_level"] = "INFO"
            verbose = 3  # Print details on trial result
        if args.vv:
            exp["config"]["log_level"] = "DEBUG"
            verbose = 3  # Print details on trial result

    if args.ray_num_nodes:
        # Import this only here so that train.py also works with
        # older versions (and user doesn't use `--ray-num-nodes`).
        from ray.cluster_utils import Cluster

        cluster = Cluster()
        for _ in range(args.ray_num_nodes):
            cluster.add_node(
                num_cpus=args.ray_num_cpus or 1,
                num_gpus=args.ray_num_gpus or 0,
                object_store_memory=args.ray_object_store_memory,
            )
        ray.init(address=cluster.address)
    else:
        ray.init(
            include_dashboard=args.ray_ui,
            address=args.ray_address,
            object_store_memory=args.ray_object_store_memory,
            num_cpus=args.ray_num_cpus,
            num_gpus=args.ray_num_gpus,
            local_mode=args.local_mode,
        )

    if IS_NOTEBOOK:
        progress_reporter = JupyterNotebookReporter(
            overwrite=verbose >= 3, print_intermediate_tables=verbose >= 1)
    else:
        progress_reporter = CLIReporter(print_intermediate_tables=verbose >= 1)

    run_experiments(
        experiments,
        scheduler=create_scheduler(args.scheduler, **args.scheduler_config),
        resume=args.resume,
        verbose=verbose,
        progress_reporter=progress_reporter,
        concurrent=True,
    )

    ray.shutdown()
Example #5
0
def run(run_or_experiment,
        name=None,
        stop=None,
        config=None,
        resources_per_trial=None,
        num_samples=1,
        local_dir=None,
        upload_dir=None,
        trial_name_creator=None,
        loggers=None,
        sync_to_cloud=None,
        sync_to_driver=None,
        checkpoint_freq=0,
        checkpoint_at_end=False,
        keep_checkpoints_num=None,
        checkpoint_score_attr=None,
        global_checkpoint_period=10,
        export_formats=None,
        max_failures=3,
        restore=None,
        search_alg=None,
        scheduler=None,
        with_server=False,
        server_port=TuneServer.DEFAULT_PORT,
        verbose=2,
        resume=False,
        queue_trials=False,
        reuse_actors=False,
        trial_executor=None,
        raise_on_failed_trial=True,
        return_trials=False,
        ray_auto_init=True,
        sync_function=None):
    """Executes training.

    Args:
        run_or_experiment (function|class|str|Experiment): If
            function|class|str, this is the algorithm or model to train.
            This may refer to the name of a built-on algorithm
            (e.g. RLLib's DQN or PPO), a user-defined trainable
            function or class, or the string identifier of a
            trainable function or class registered in the tune registry.
            If Experiment, then Tune will execute training based on
            Experiment.spec.
        name (str): Name of experiment.
        stop (dict|func): The stopping criteria. If dict, the keys may be
            any field in the return result of 'train()', whichever is
            reached first. If function, it must take (trial_id, result) as
            arguments and return a boolean (True if trial should be stopped,
            False otherwise).
        config (dict): Algorithm-specific configuration for Tune variant
            generation (e.g. env, hyperparams). Defaults to empty dict.
            Custom search algorithms may ignore this.
        resources_per_trial (dict): Machine resources to allocate per trial,
            e.g. ``{"cpu": 64, "gpu": 8}``. Note that GPUs will not be
            assigned unless you specify them here. Defaults to 1 CPU and 0
            GPUs in ``Trainable.default_resource_request()``.
        num_samples (int): Number of times to sample from the
            hyperparameter space. Defaults to 1. If `grid_search` is
            provided as an argument, the grid will be repeated
            `num_samples` of times.
        local_dir (str): Local dir to save training results to.
            Defaults to ``~/ray_results``.
        upload_dir (str): Optional URI to sync training results
            to (e.g. ``s3://bucket``).
        trial_name_creator (func): Optional function for generating
            the trial string representation.
        loggers (list): List of logger creators to be used with
            each Trial. If None, defaults to ray.tune.logger.DEFAULT_LOGGERS.
            See `ray/tune/logger.py`.
        sync_to_cloud (func|str): Function for syncing the local_dir to and
            from upload_dir. If string, then it must be a string template
            that includes `{source}` and `{target}` for the syncer to run.
            If not provided, the sync command defaults to standard
            S3 or gsutil sync comamnds.
        sync_to_driver (func|str): Function for syncing trial logdir from
            remote node to local. If string, then it must be a string template
            that includes `{source}` and `{target}` for the syncer to run.
            If not provided, defaults to using rsync.
        checkpoint_freq (int): How many training iterations between
            checkpoints. A value of 0 (default) disables checkpointing.
        checkpoint_at_end (bool): Whether to checkpoint at the end of the
            experiment regardless of the checkpoint_freq. Default is False.
        keep_checkpoints_num (int): Number of checkpoints to keep. A value of
            `None` keeps all checkpoints. Defaults to `None`. If set, need
            to provide `checkpoint_score_attr`.
        checkpoint_score_attr (str): Specifies by which attribute to rank the
            best checkpoint. Default is increasing order. If attribute starts
            with `min-` it will rank attribute in decreasing order, i.e.
            `min-validation_loss`.
        global_checkpoint_period (int): Seconds between global checkpointing.
            This does not affect `checkpoint_freq`, which specifies frequency
            for individual trials.
        export_formats (list): List of formats that exported at the end of
            the experiment. Default is None.
        max_failures (int): Try to recover a trial from its last
            checkpoint at least this many times. Only applies if
            checkpointing is enabled. Setting to -1 will lead to infinite
            recovery retries. Defaults to 3.
        restore (str): Path to checkpoint. Only makes sense to set if
            running 1 trial. Defaults to None.
        search_alg (SearchAlgorithm): Search Algorithm. Defaults to
            BasicVariantGenerator.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, and HyperBand.
        with_server (bool): Starts a background Tune server. Needed for
            using the Client API.
        server_port (int): Port number for launching TuneServer.
        verbose (int): 0, 1, or 2. Verbosity mode. 0 = silent,
            1 = only status updates, 2 = status and trial results.
        resume (str|bool): One of "LOCAL", "REMOTE", "PROMPT", or bool.
            LOCAL/True restores the checkpoint from the local_checkpoint_dir.
            REMOTE restores the checkpoint from remote_checkpoint_dir.
            PROMPT provides CLI feedback. False forces a new
            experiment. If resume is set but checkpoint does not exist,
            ValueError will be thrown.
        queue_trials (bool): Whether to queue trials when the cluster does
            not currently have enough resources to launch one. This should
            be set to True when running on an autoscaling cluster to enable
            automatic scale-up.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.
        ray_auto_init (bool): Automatically starts a local Ray cluster
            if using a RayTrialExecutor (which is the default) and
            if Ray is not initialized. Defaults to True.
        sync_function: Deprecated. See `sync_to_cloud` and
            `sync_to_driver`.

    Returns:
        List of Trial objects.

    Raises:
        TuneError if any trials failed and `raise_on_failed_trial` is True.

    Examples:
        >>> tune.run(mytrainable, scheduler=PopulationBasedTraining())

        >>> tune.run(mytrainable, num_samples=5, reuse_actors=True)

        >>> tune.run(
        >>>     "PG",
        >>>     num_samples=5,
        >>>     config={
        >>>         "env": "CartPole-v0",
        >>>         "lr": tune.sample_from(lambda _: np.random.rand())
        >>>     }
        >>> )
    """
    trial_executor = trial_executor or RayTrialExecutor(
        queue_trials=queue_trials,
        reuse_actors=reuse_actors,
        ray_auto_init=ray_auto_init)
    experiment = run_or_experiment
    if not isinstance(run_or_experiment, Experiment):
        run_identifier = Experiment._register_if_needed(run_or_experiment)
        experiment = Experiment(
            name=name,
            run=run_identifier,
            stop=stop,
            config=config,
            resources_per_trial=resources_per_trial,
            num_samples=num_samples,
            local_dir=local_dir,
            upload_dir=upload_dir,
            sync_to_driver=sync_to_driver,
            trial_name_creator=trial_name_creator,
            loggers=loggers,
            checkpoint_freq=checkpoint_freq,
            checkpoint_at_end=checkpoint_at_end,
            keep_checkpoints_num=keep_checkpoints_num,
            checkpoint_score_attr=checkpoint_score_attr,
            export_formats=export_formats,
            max_failures=max_failures,
            restore=restore,
            sync_function=sync_function)
    else:
        logger.debug("Ignoring some parameters passed into tune.run.")

    if sync_to_cloud:
        assert experiment.remote_checkpoint_dir, (
            "Need `upload_dir` if `sync_to_cloud` given.")

    runner = TrialRunner(
        search_alg=search_alg or BasicVariantGenerator(),
        scheduler=scheduler or FIFOScheduler(),
        local_checkpoint_dir=experiment.checkpoint_dir,
        remote_checkpoint_dir=experiment.remote_checkpoint_dir,
        sync_to_cloud=sync_to_cloud,
        checkpoint_period=global_checkpoint_period,
        resume=resume,
        launch_web_server=with_server,
        server_port=server_port,
        verbose=bool(verbose > 1),
        trial_executor=trial_executor)

    runner.add_experiment(experiment)

    if IS_NOTEBOOK:
        reporter = JupyterNotebookReporter(overwrite=verbose < 2)
    else:
        reporter = CLIReporter()

    last_debug = 0
    while not runner.is_finished():
        runner.step()
        if time.time() - last_debug > DEBUG_PRINT_INTERVAL:
            if verbose:
                reporter.report(runner)
            last_debug = time.time()

    try:
        runner.checkpoint(force=True)
    except Exception:
        logger.exception("Trial Runner checkpointing failed.")

    if verbose:
        reporter.report(runner)

    wait_for_sync()

    errored_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            errored_trials += [trial]

    if errored_trials:
        if raise_on_failed_trial:
            raise TuneError("Trials did not complete", errored_trials)
        else:
            logger.error("Trials did not complete: %s", errored_trials)

    trials = runner.get_trials()
    if return_trials:
        return trials
    logger.info("Returning an analysis object by default. You can call "
                "`analysis.trials` to retrieve a list of trials. "
                "This message will be removed in future versions of Tune.")
    return ExperimentAnalysis(runner.checkpoint_file, trials=trials)
Example #6
0
def run(args, parser):
    if args.config_file:
        with open(args.config_file) as f:
            experiments = yaml.safe_load(f)
    else:
        # Note: keep this in sync with tune/config_parser.py
        experiments = {
            args.experiment_name: {  # i.e. log to ~/ray_results/default
                "run": args.run,
                "checkpoint_freq": args.checkpoint_freq,
                "checkpoint_at_end": args.checkpoint_at_end,
                "keep_checkpoints_num": args.keep_checkpoints_num,
                "checkpoint_score_attr": args.checkpoint_score_attr,
                "local_dir": args.local_dir,
                "resources_per_trial": (
                    args.resources_per_trial and
                    resources_to_json(args.resources_per_trial)),
                "stop": args.stop,
                "config": dict(args.config, env=args.env),
                "restore": args.restore,
                "num_samples": args.num_samples,
                "upload_dir": args.upload_dir,
            }
        }

    verbose = 1
    for exp in experiments.values():
        # Bazel makes it hard to find files specified in `args` (and `data`).
        # Look for them here.
        # NOTE: Some of our yaml files don't have a `config` section.
        if exp.get("config", {}).get("input") and \
                not os.path.exists(exp["config"]["input"]):
            # This script runs in the ray/rllib dir.
            rllib_dir = Path(__file__).parent
            input_file = rllib_dir.absolute().joinpath(exp["config"]["input"])
            exp["config"]["input"] = str(input_file)

        if not exp.get("run"):
            parser.error("the following arguments are required: --run")
        if not exp.get("env") and not exp.get("config", {}).get("env"):
            parser.error("the following arguments are required: --env")

        if args.torch:
            exp["config"]["framework"] = "torch"
        elif args.eager:
            exp["config"]["framework"] = "tfe"

        if args.trace:
            if exp["config"]["framework"] not in ["tf2", "tfe"]:
                raise ValueError("Must enable --eager to enable tracing.")
            exp["config"]["eager_tracing"] = True

        if args.v:
            exp["config"]["log_level"] = "INFO"
            verbose = 3  # Print details on trial result
        if args.vv:
            exp["config"]["log_level"] = "DEBUG"
            verbose = 3  # Print details on trial result

    if args.ray_num_nodes:
        cluster = Cluster()
        for _ in range(args.ray_num_nodes):
            cluster.add_node(num_cpus=args.ray_num_cpus or 1,
                             num_gpus=args.ray_num_gpus or 0,
                             object_store_memory=args.ray_object_store_memory)
        ray.init(address=cluster.address)
    else:
        ray.init(include_dashboard=not args.no_ray_ui,
                 address=args.ray_address,
                 object_store_memory=args.ray_object_store_memory,
                 num_cpus=args.ray_num_cpus,
                 num_gpus=args.ray_num_gpus,
                 local_mode=args.local_mode)

    if IS_NOTEBOOK:
        progress_reporter = JupyterNotebookReporter(
            overwrite=verbose >= 3, print_intermediate_tables=verbose >= 1)
    else:
        progress_reporter = CLIReporter(print_intermediate_tables=verbose >= 1)

    run_experiments(experiments,
                    scheduler=create_scheduler(args.scheduler,
                                               **args.scheduler_config),
                    resume=args.resume,
                    queue_trials=args.queue_trials,
                    verbose=verbose,
                    progress_reporter=progress_reporter,
                    concurrent=True)

    ray.shutdown()