Example #1
0
    def __init__(self,
                 time_attr="time_total_s",
                 reward_attr=None,
                 metric="episode_reward_mean",
                 mode="max",
                 perturbation_interval=60.0,
                 hyperparam_mutations={},
                 quantile_fraction=0.25,
                 resample_probability=0.25,
                 custom_explore_fn=None,
                 log_config=True):
        for value in hyperparam_mutations.values():
            if not (isinstance(value, list) or callable(value)):
                raise TypeError("`hyperparam_mutation` values must be either "
                                "a List or callable.")

        if not hyperparam_mutations and not custom_explore_fn:
            raise TuneError(
                "You must specify at least one of `hyperparam_mutations` or "
                "`custom_explore_fn` to use PBT.")

        if quantile_fraction > 0.5 or quantile_fraction < 0:
            raise TuneError(
                "You must set `quantile_fraction` to a value between 0 and"
                "0.5. Current value: '{}'".format(quantile_fraction))

        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"

        if reward_attr is not None:
            mode = "max"
            metric = reward_attr
            logger.warning(
                "`reward_attr` is deprecated and will be removed in a future "
                "version of Tune. "
                "Setting `metric={}` and `mode=max`.".format(reward_attr))

        FIFOScheduler.__init__(self)
        self._metric = metric
        if mode == "max":
            self._metric_op = 1.
        elif mode == "min":
            self._metric_op = -1.
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._hyperparam_mutations = hyperparam_mutations
        self._quantile_fraction = quantile_fraction
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn
        self._log_config = log_config

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0
Example #2
0
    def __init__(
        self,
        time_attr="training_iteration",
        reward_attr=None,
        metric="episode_reward_mean",
        mode="max",
        max_t=100,
        grace_period=1,
        reduction_factor=4,
        brackets=1,
    ):
        assert max_t > 0, "Max (time_attr) not valid!"
        assert max_t >= grace_period, "grace_period must be <= max_t!"
        assert grace_period > 0, "grace_period must be positive!"
        assert reduction_factor > 1, "Reduction Factor not valid!"
        assert brackets > 0, "brackets must be positive!"
        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"

        if reward_attr is not None:
            mode = "max"
            metric = reward_attr
            logger.warning(
                "`reward_attr` is deprecated and will be removed in a future "
                "version of Tune. "
                "Setting `metric={}` and `mode=max`.".format(reward_attr)
            )

        FIFOScheduler.__init__(self)
        self._reduction_factor = reduction_factor
        self._max_t = max_t

        # Tracks state for new trial add
        self._brackets = [
            _Bracket(grace_period, max_t, reduction_factor, s) for s in range(brackets)
        ]
        self._counter = 0  # for
        self._num_stopped = 0
        self._metric = metric
        if mode == "max":
            self._metric_op = 1.0
        elif mode == "min":
            self._metric_op = -1.0
        self._time_attr = time_attr
        self._num_paused = 0
Example #3
0
    def __init__(self,
                 time_attr="time_total_s",
                 reward_attr=None,
                 metric="episode_reward_mean",
                 mode="max",
                 perturbation_interval=60.0,
                 hyperparam_mutations={},
                 resample_probability=0.25,
                 custom_explore_fn=None,
                 log_config=True):
        if not hyperparam_mutations and not custom_explore_fn:
            raise TuneError(
                "You must specify at least one of `hyperparam_mutations` or "
                "`custom_explore_fn` to use PBT.")

        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"

        if reward_attr is not None:
            mode = "max"
            metric = reward_attr
            logger.warning(
                "`reward_attr` is deprecated and will be removed in a future "
                "version of Tune. "
                "Setting `metric={}` and `mode=max`.".format(reward_attr))

        FIFOScheduler.__init__(self)
        self._metric = metric
        if mode == "max":
            self._metric_op = 1.
        elif mode == "min":
            self._metric_op = -1.
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._hyperparam_mutations = hyperparam_mutations
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn
        self._log_config = log_config

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0
Example #4
0
    def __init__(self,
                 time_attr="time_total_s",
                 reward_attr="episode_reward_mean",
                 perturbation_interval=60.0,
                 hyperparam_mutations={},
                 resample_probability=0.25,
                 custom_explore_fn=None):
        if not hyperparam_mutations and not custom_explore_fn:
            raise TuneError(
                "You must specify at least one of `hyperparam_mutations` or "
                "`custom_explore_fn` to use PBT.")
        FIFOScheduler.__init__(self)
        self._reward_attr = reward_attr
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._hyperparam_mutations = hyperparam_mutations
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0
Example #5
0
    def __init__(self,
                 time_attr="time_total_s",
                 reward_attr="episode_reward_mean",
                 perturbation_interval=60.0,
                 hyperparam_mutations={},
                 resample_probability=0.25,
                 custom_explore_fn=None):
        if not hyperparam_mutations and not custom_explore_fn:
            raise TuneError(
                "You must specify at least one of `hyperparam_mutations` or "
                "`custom_explore_fn` to use PBT.")
        FIFOScheduler.__init__(self)
        self._reward_attr = reward_attr
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._hyperparam_mutations = hyperparam_mutations
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0
Example #6
0
    def __init__(
        self,
        time_attr: str = "time_total_s",
        metric: Optional[str] = None,
        mode: Optional[str] = None,
        perturbation_interval: float = 60.0,
        burn_in_period: float = 0.0,
        hyperparam_mutations: Dict = None,
        quantile_fraction: float = 0.25,
        resample_probability: float = 0.25,
        custom_explore_fn: Optional[Callable] = None,
        log_config: bool = True,
        require_attrs: bool = True,
        synch: bool = False,
    ):
        hyperparam_mutations = hyperparam_mutations or {}
        for value in hyperparam_mutations.values():
            if not (isinstance(value,
                               (list, dict, Domain)) or callable(value)):
                raise TypeError("`hyperparam_mutation` values must be either "
                                "a List, Dict, a tune search space object, or "
                                "a callable.")
            if isinstance(value, Function):
                raise ValueError("arbitrary tune.sample_from objects are not "
                                 "supported for `hyperparam_mutation` values."
                                 "You must use other built in primitives like"
                                 "tune.uniform, tune.loguniform, etc.")

            if not hyperparam_mutations and not custom_explore_fn:
                raise TuneError(
                    "You must specify at least one of `hyperparam_mutations` "
                    "or `custom_explore_fn` to use PBT.")

        if quantile_fraction > 0.5 or quantile_fraction < 0:
            raise ValueError(
                "You must set `quantile_fraction` to a value between 0 and"
                "0.5. Current value: '{}'".format(quantile_fraction))

        if perturbation_interval <= 0:
            raise ValueError(
                "perturbation_interval must be a positive number greater "
                "than 0. Current value: '{}'".format(perturbation_interval))

        if mode:
            assert mode in ["min", "max"], "`mode` must be 'min' or 'max'."

        FIFOScheduler.__init__(self)
        self._metric = metric
        self._mode = mode
        self._metric_op = None
        if self._mode == "max":
            self._metric_op = 1.0
        elif self._mode == "min":
            self._metric_op = -1.0
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._burn_in_period = burn_in_period
        self._hyperparam_mutations = hyperparam_mutations
        self._quantile_fraction = quantile_fraction
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn
        self._log_config = log_config
        self._require_attrs = require_attrs
        self._synch = synch
        self._next_perturbation_sync = max(
            self._perturbation_interval,
            self._burn_in_period,
        )

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0
Example #7
0
    def __init__(self,
                 time_attr="time_total_s",
                 reward_attr=None,
                 metric="episode_reward_mean",
                 mode="max",
                 perturbation_interval=60.0,
                 hyperparam_mutations={},
                 quantile_fraction=0.25,
                 resample_probability=0.25,
                 custom_explore_fn=None,
                 log_config=True,
                 require_attrs=True,
                 synch=False):
        for value in hyperparam_mutations.values():
            if not (isinstance(value,
                               (list, dict, sample_from)) or callable(value)):
                raise TypeError("`hyperparam_mutation` values must be either "
                                "a List, Dict, a tune search space object, or "
                                "callable.")
            if type(value) is sample_from:
                raise ValueError("arbitrary tune.sample_from objects are not "
                                 "supported for `hyperparam_mutation` values."
                                 "You must use other built in primitives like"
                                 "tune.uniform, tune.loguniform, etc.")

        if not hyperparam_mutations and not custom_explore_fn:
            raise TuneError(
                "You must specify at least one of `hyperparam_mutations` or "
                "`custom_explore_fn` to use PBT.")

        if quantile_fraction > 0.5 or quantile_fraction < 0:
            raise ValueError(
                "You must set `quantile_fraction` to a value between 0 and"
                "0.5. Current value: '{}'".format(quantile_fraction))

        if perturbation_interval <= 0:
            raise ValueError(
                "perturbation_interval must be a positive number greater "
                "than 0. Current value: '{}'".format(perturbation_interval))

        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"

        if reward_attr is not None:
            mode = "max"
            metric = reward_attr
            logger.warning(
                "`reward_attr` is deprecated and will be removed in a future "
                "version of Tune. "
                "Setting `metric={}` and `mode=max`.".format(reward_attr))

        FIFOScheduler.__init__(self)
        self._metric = metric
        if mode == "max":
            self._metric_op = 1.
        elif mode == "min":
            self._metric_op = -1.
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._hyperparam_mutations = hyperparam_mutations
        self._quantile_fraction = quantile_fraction
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn
        self._log_config = log_config
        self._require_attrs = require_attrs
        self._synch = synch
        self._next_perturbation_sync = self._perturbation_interval

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0
Example #8
0
    def __init__(
        self,
        total_atoms,
        resource_policy="UNIFORM",
        scaling_dict=SCALING_MAP["LINEAR"],
        deadline=np.inf,
        allocation_grid=None,
        use_pausing=True,
        grace_period=1,
        reduction_factor=4,
        max_t=100,
        time_attr="training_iteration",
        metric="episode_reward_mean",
        mode="max",
        _no_speculation=False,
        _ignore_overhead=False,
        _no_job_limit=False,
        _assume_linear=False,
        _fixed_exploration=False,
        _exploration_ratio=1.0,
    ):
        # Arguments for ablative study
        self._no_speculation = _no_speculation  # stored
        self._ignore_overhead = _ignore_overhead  # stored
        self._no_job_limit = _no_job_limit  # stored
        self._assume_linear = _assume_linear
        self._fixed_exploration = _fixed_exploration
        self._exploration_ratio = _exploration_ratio
        FIFOScheduler.__init__(self)

        self.use_pausing = use_pausing
        self._num_paused = 0
        self._num_stopped = 0
        self._reduction_factor = reduction_factor
        self._max_t = max_t
        self._metric = metric
        self._time_attr = time_attr
        if mode == "max":
            self._metric_op = 1.0
        elif mode == "min":
            self._metric_op = -1.0

        if self._no_speculation:
            self._brackets = [
                ASHAv2Bracket(
                    min_t=grace_period,
                    max_t=self._max_t,
                    reduction_factor=self._reduction_factor,
                    s=0,
                )
            ]
        else:
            self._brackets = [
                _DeadlineBracket(
                    self._reduction_factor,
                    max_t=self._max_t,
                    min_t=grace_period,
                    use_pausing=self.use_pausing,
                )
            ]

        if self._fixed_exploration:
            logger.warning(
                f"FIXED EXPLORATION TIME OF {self._exploration_ratio}"
            )

        if self._fixed_exploration:
            logger.warning(
                f"FIXED EXPLORATION TIME OF {self._exploration_ratio}"
            )

        self.grace_period = grace_period
        self.start_time = time.time()
        self._deadline = deadline
        self._deadline_time = deadline + time.time()
        self._longest_duration = -1
        check(self._deadline_time > self.start_time)

        self.total_atoms = total_atoms
        self.allocator = DynamicAllocator(
            self.total_atoms,
            policy=resource_policy,
            allocation_grid=allocation_grid,
            recharge_period=5,
            metric=self._metric,
            metric_op=self._metric_op,
        )

        if self._assume_linear:
            logger.warning("ABLATION: ASSUMING LINEAR SCALING.")
            scaling_dict = SCALING_MAP["LINEAR"]
        self.scaling_fn = scaling_function_from_dict(scaling_dict)
        self._startup_times = set()
        #: Time it takes for a single iteration
        self._single_atom_iteration_times = []
Example #9
0
File: pb2.py Project: os-popt/PB2
    def __init__(self,
                 time_attr="time_total_s",
                 reward_attr=None,
                 metric="episode_reward_mean",
                 mode="max",
                 perturbation_interval=60.0,
                 hyperparam_mutations={},
                 quantile_fraction=0.25,
                 resample_probability=0.25,
                 custom_explore_fn=None,
                 log_config=True):
        if not hyperparam_mutations and not custom_explore_fn:
            raise TuneError(
                "You must specify at least one of `hyperparam_mutations` or "
                "`custom_explore_fn` to use PBT.")

        if quantile_fraction > 0.5 or quantile_fraction < 0:
            raise TuneError(
                "You must set `quantile_fraction` to a value between 0 and"
                "0.5. Current value: '{}'".format(quantile_fraction))

        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"

        if reward_attr is not None:
            mode = "max"
            metric = reward_attr
            logger.warning(
                "`reward_attr` is deprecated and will be removed in a future "
                "version of Tune. "
                "Setting `metric={}` and `mode=max`.".format(reward_attr))

        FIFOScheduler.__init__(self)
        self._metric = metric
        if mode == "max":
            self._metric_op = 1.
        elif mode == "min":
            self._metric_op = -1.
        self._time_attr = time_attr
        self._perturbation_interval = perturbation_interval
        self._hyperparam_mutations = hyperparam_mutations
        self._quantile_fraction = quantile_fraction
        self._resample_probability = resample_probability
        self._trial_state = {}
        self._custom_explore_fn = custom_explore_fn
        self._log_config = log_config

        self.meta = {
            'timesteps': [],
            'lengthscales': [],
            'closest': [],
            'meandist': []
        }
        self.latest = 0  # when we last did bayesopt
        self.data = pd.DataFrame()

        self.bounds = {}
        for key, distribution in self._hyperparam_mutations.items():
            self.bounds[key] = [
                np.min([distribution() for _ in range(999999)]),
                np.max([distribution() for _ in range(999999)])
            ]

        # Metrics
        self._num_checkpoints = 0
        self._num_perturbations = 0