def testLogging(self): from ray.tune.examples.logging_example import MyTrainableClass validate_save_restore(MyTrainableClass) validate_save_restore(MyTrainableClass, use_object_store=True)
def testHyperbandExample(self): from ray.tune.examples.hyperband_example import MyTrainableClass validate_save_restore(MyTrainableClass) validate_save_restore(MyTrainableClass, use_object_store=True)
# __trainable_end__ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--smoke-test", action="store_true", help="Finish quickly for testing") args, _ = parser.parse_known_args() ray.init(num_cpus=2) datasets.MNIST("~/data", train=True, download=True) # check if PytorchTrainble will save/restore correctly before execution validate_save_restore(PytorchTrainable) validate_save_restore(PytorchTrainable, use_object_store=True) # __pbt_begin__ scheduler = PopulationBasedTraining( time_attr="training_iteration", perturbation_interval=5, hyperparam_mutations={ # distribution for resampling "lr": lambda: np.random.uniform(0.0001, 1), # allow perturbations within this set of categorical values "momentum": [0.8, 0.9, 0.99], }) # __pbt_end__
def testAsyncHyperbandExample(self): from ray.tune.utils.mock import MyTrainableClass validate_save_restore(MyTrainableClass) validate_save_restore(MyTrainableClass, use_object_store=True)
def testPyTorchMNIST(self): from ray.tune.examples.mnist_pytorch_trainable import TrainMNIST from torchvision import datasets datasets.MNIST("~/data", train=True, download=True) validate_save_restore(TrainMNIST) validate_save_restore(TrainMNIST, use_object_store=True)
def testPBTKeras(self): from ray.tune.examples.pbt_tune_cifar10_with_keras import Cifar10Model from tensorflow.python.keras.datasets import cifar10 cifar10.load_data() validate_save_restore(Cifar10Model) validate_save_restore(Cifar10Model, use_object_store=True)
def testAsyncHyperbandExample(self): validate_save_restore(MyTrainableClass) validate_save_restore(MyTrainableClass, use_object_store=True)