def analyse_ray_dump(ray_directory, topn, metric="avg_inc_acc"):
    if metric not in ("avg_inc_acc", "last_acc"):
        raise NotImplementedError("Unknown metric {}.".format(metric))

    ea = Analysis(ray_directory)
    trials_dataframe = ea.dataframe()
    trials_dataframe = trials_dataframe.sort_values(by=metric, ascending=False)

    mapping_col_to_index = {}
    result_index = -1
    for index, col in enumerate(trials_dataframe.columns):
        if col.startswith("config:"):
            mapping_col_to_index[col[7:]] = index
        elif col == metric:
            result_index = index

    print("Ray config: {}".format(ray_directory))
    print("Best Config:")
    print("{}: {} with {}.".format(
        metric, trials_dataframe.iloc[0][result_index],
        _get_line_results(trials_dataframe, 0, mapping_col_to_index)))
    print("\nFollowed by:")
    if topn < 0:
        topn = len(trials_dataframe)
    else:
        topn = min(topn - 1, len(trials_dataframe))

    for i in range(1, topn):
        print("avg_inc_acc: {} with {}.".format(
            trials_dataframe.iloc[i][result_index],
            _get_line_results(trials_dataframe, i, mapping_col_to_index)))

    return _get_line_results(trials_dataframe, 0, mapping_col_to_index)
def main():
    analysis = Analysis(TUNE_RESULTS_FOLDER)
    print("Best hyperparameter {}".format(
        analysis.get_best_config(metric="mean_reward", mode="max")))
    best_model_path = analysis.get_best_logdir(metric="mean_reward",
                                               mode="max")
    print(
        "Best model found in {}, start rendering .gif".format(best_model_path))
    best_model = SomeModelToTrain({
        'learning_rate': 0.1,
        'batch_size': 1,
        'target_update': 1
    })
    checkpoint_path = f'{best_model_path}/checkpoint_{MAX_TRAINING_ITERATION}'
    best_model.load(checkpoint_path + '/' + MODEL_FILENAME)

    # we got this part from https://stable-baselines.readthedocs.io/en/master/guide/examples.html and modified it
    env = gym.make('LunarLander-v2')
    images = []
    state = env.reset()
    for j in range(210):
        action = best_model.agent.act(state)
        img = env.render(mode='rgb_array')
        images.append(img)
        state, reward, done, _ = env.step(action)
        if done:
            break
    env.close()

    imageio.mimsave(
        'best_model.gif',
        [np.array(img) for i, img in enumerate(images) if i % 2 == 0],
        fps=29)
    optimize('best_model.gif')
Example #3
0
 def testBestLogdir(self):
     analysis = Analysis(self.test_dir)
     logdir = analysis.get_best_logdir(self.metric)
     self.assertTrue(logdir.startswith(self.test_dir))
     logdir2 = analysis.get_best_logdir(self.metric, mode="min")
     self.assertTrue(logdir2.startswith(self.test_dir))
     self.assertNotEquals(logdir, logdir2)
Example #4
0
    def collect(self):
        """
        Collects and cleans data on the running Tune experiment from the
        Tune logs so that users can see this information in the front-end
        client
        """
        sub_dirs = os.listdir(self._logdir)
        job_names = filter(
            lambda d: os.path.isdir(os.path.join(self._logdir, d)), sub_dirs)

        self._trial_records = {}

        # search through all the sub_directories in log directory
        for job_name in job_names:
            analysis = Analysis(str(os.path.join(self._logdir, job_name)))
            df = analysis.dataframe()
            if len(df) == 0:
                continue

            self._available = True

            # make sure that data will convert to JSON without error
            df["trial_id"] = df["trial_id"].astype(str)
            df = df.fillna(0)

            # convert df to python dict
            df = df.set_index("trial_id")
            trial_data = df.to_dict(orient="index")

            # clean data and update class attribute
            if len(trial_data) > 0:
                trial_data = self.clean_trials(trial_data, job_name)
                self._trial_records.update(trial_data)
Example #5
0
    def collect(self):
        """
        Collects and cleans data on the running Tune experiment from the
        Tune logs so that users can see this information in the front-end
        client
        """

        sub_dirs = os.listdir(self._logdir)
        job_names = filter(
            lambda d: os.path.isdir(os.path.join(self._logdir, d)), sub_dirs)

        self._trial_records = {}

        # search through all the sub_directories in log directory
        for job_name in job_names:
            analysis = Analysis(str(os.path.join(self._logdir, job_name)))
            df = analysis.dataframe()

            if len(df) == 0 or "trial_id" not in df.columns:
                continue

            # start TensorBoard server if not started yet
            if not self._tensor_board_started:
                tb = program.TensorBoard()
                tb.configure(argv=[None, "--logdir", self._logdir])
                tb.launch()
                self._tensor_board_started = True

            self._available = True

            # make sure that data will convert to JSON without error
            df["trial_id_key"] = df["trial_id"].astype(str)
            df = df.fillna(0)

            trial_ids = df["trial_id"]
            for i, value in df["trial_id"].iteritems():
                if type(value) != str and type(value) != int:
                    trial_ids[i] = int(value)

            df["trial_id"] = trial_ids

            # convert df to python dict
            df = df.set_index("trial_id_key")
            trial_data = df.to_dict(orient="index")

            # clean data and update class attribute
            if len(trial_data) > 0:
                trial_data = self.clean_trials(trial_data, job_name)
                self._trial_records.update(trial_data)

            self.collect_errors(job_name, df)
Example #6
0
def analyze_ray_experiment(exp_dir, default_metric, default_mode):
    from ray.tune import Analysis

    analysis = Analysis(exp_dir, default_metric=default_metric, default_mode=default_mode)

    topk_summary_plot_v2(analysis, 5, save_dir=exp_dir)

    summ, styled = summarize_top_k(analysis, k=10, save_dir=exp_dir)
Example #7
0
def get_tune_dfs(path):
    """
    Here we load the df which is produced/logged by Tune.
    For more details see here:  https://docs.ray.io/en/latest/tune/api_docs/analysis.html#tune-analysis-docs
    """
    analysis = Analysis(path)
    d = analysis.trial_dataframes
    return d
Example #8
0
def get_best_specific_params_dir(opt, layer, model, att_type):
    analysis = Analysis("../ray_tune/{}".format(opt['folder']))
    df = analysis.dataframe(metric=opt['metric'], mode='max')
    print(df)
    df.columns = [c.replace('config/', '') for c in df.columns]
    print(df)
    # # newdf = df.loc[(df.num_layers == layers) & (df.model == model) & (df.att_type == att_type)]
    print(layer)
    print(df['num_layers'].unique())
    print(model)
    print(df['model'].unique())
    print(att_type)
    print(df['att_type'].unique())

    newdf = df.loc[(df['num_layers'] == layer) & (df['model'] == model) &
                   (df['att_type'] == att_type)]
    print(newdf)
    best_params_dir = newdf.sort_values(
        'accuracy', ascending=False)['logdir'].iloc[opt['index']]
    return best_params_dir
Example #9
0
 def meta_setup(self):
     from ray.tune import Analysis
     out_meta = ContextCompositeNode.meta_setup(self)
     if 'tune' in self.conf:
         if 'local_dir' in self.conf['tune']:
             path = self.conf['tune']['local_dir']
             if 'name' in self.conf['tune']:
                 exp = self.conf['tune']['name']
                 try:
                     analysis = Analysis(path + '/' + exp)
                     if 'best' in self.conf:
                         best = analysis.get_best_config(
                             **self.conf['best'])
                         for key in best.keys():
                             self.conf['context'][key]['value'] = best[key]
                         print('get best', best)
                         out_meta.outports[self.OUTPUT_CONFIG] = self.conf
                 except Exception:
                     pass
     return out_meta
Example #10
0
    def collect(self):
        """
        Collects and cleans data on the running Tune experiment from the
        Tune logs so that users can see this information in the front-end
        client
        """
        self._trial_records = {}
        self._errors = {}
        if not self._logdir:
            return

        # search through all the sub_directories in log directory
        analysis = Analysis(str(self._logdir))
        df = analysis.dataframe()

        if len(df) == 0 or "trial_id" not in df.columns:
            return

        self._trials_available = True

        # make sure that data will convert to JSON without error
        df["trial_id_key"] = df["trial_id"].astype(str)
        df = df.fillna(0)

        trial_ids = df["trial_id"]
        for i, value in df["trial_id"].iteritems():
            if type(value) != str and type(value) != int:
                trial_ids[i] = int(value)

        df["trial_id"] = trial_ids

        # convert df to python dict
        df = df.set_index("trial_id_key")
        trial_data = df.to_dict(orient="index")

        # clean data and update class attribute
        if len(trial_data) > 0:
            trial_data = self.clean_trials(trial_data)
            self._trial_records.update(trial_data)

        self.collect_errors(df)
Example #11
0
from ray.tune import Analysis
import pandas as pd
import os
import numpy as np

if __name__ == "__main__":
    analysis = Analysis(
        "/Users/shaobohu/Documents/我的坚果云/project/circles_experiment/TRY_ALL/Train")
    print(sorted(analysis.dataframe()['acc'].tolist()))
    print(analysis.get_best_config('acc', 'max'))
Example #12
0
def main(args):
    ray.init(num_cpus=args.num_cpus,
             memory=3000 * 1024**2,
             object_store_memory=300 * 1024**2)

    def train_reg(config, reporter):
        sys.path.append(BASE_DIR)

        # 1) load / generate data
        from experiments.data_sim import provide_data
        data_train, data_valid, _ = provide_data(dataset=args.dataset)

        # 2) setup model
        from meta_learn.GPR_meta_vi import GPRegressionMetaLearnedVI
        torch.set_num_threads(N_THREADS_PER_RUN)

        model = GPRegressionMetaLearnedVI(data_train, **config)

        # 3) train and evaluate model
        eval_period = 2000
        train_iter = 0
        for i in range(config["num_iter_fit"] // eval_period):
            loss = model.meta_fit(verbose=False,
                                  log_period=2000,
                                  n_iter=eval_period)
            train_iter += eval_period
            ll, rmse, calib_err = model.eval_datasets(data_valid)
            reporter(timesteps_total=train_iter,
                     loss=loss,
                     test_rmse=rmse,
                     test_ll=ll,
                     calib_err=calib_err)

    @ray.remote
    def train_test(config):

        results_dict = config

        try:
            sys.path.append(BASE_DIR)

            # 1) load / generate data
            from experiments.data_sim import provide_data
            data_train, _, data_test = provide_data(dataset=args.dataset,
                                                    seed=SEED)

            # 2) Fit model
            from meta_learn.GPR_meta_vi import GPRegressionMetaLearnedVI
            torch.set_num_threads(N_THREADS_PER_RUN)
            model = GPRegressionMetaLearnedVI(data_train, **config)
            model.meta_fit(data_test, log_period=5000)

            # 3) evaluate on test set
            ll, rmse, calib_err = model.eval_datasets(data_test)

            results_dict.update(ll=ll, rmse=rmse, calib_err=calib_err)

        except Exception as e:
            print(e)
            results_dict.update(ll=np.nan, rmse=np.nan, calib_err=np.nan)

        return results_dict

    if len(args.load_analysis_from) > 0:
        assert os.path.isdir(args.load_analysis_from
                             ), 'load_analysis_from must be a valid directory'
        print('Loading existing tune analysis results from %s' %
              args.load_analysis_from)
        analysis = Analysis(args.load_analysis_from)
        exp_name = os.path.basename(args.load_analysis_from)
    else:
        space = {
            "weight_prior_std":
            hp.loguniform("weight_prior_std", math.log(5e-2), math.log(1.0)),
            "prior_factor":
            hp.loguniform("prior_factor", math.log(1e-5), math.log(1e-1)),
            "lr":
            hp.loguniform("lr", math.log(5e-4), math.log(5e-3)),
            "lr_decay":
            hp.loguniform("lr_decay", math.log(0.8), math.log(1.0)),
            "svi_batch_size":
            hp.choice("svi_batch_size", [10, 50]),
            "task_batch_size":
            hp.choice("task_batch_size", [4, 10]),
        }

        config = {
            "num_samples": 240,
            "config": {
                "num_iter_fit": 30000,
                'kernel_nn_layers': [32, 32, 32, 32],
                'mean_nn_layers': [32, 32, 32, 32],
                'random_seed': SEED,
                'mean_module': 'NN',
                'covar_module': args.covar_module,
                'normalize_data': True,
                'cov_type': 'diag'
            },
            "stop": {
                "timesteps_total": 30000
            },
        }

        # Run hyper-parameter search

        algo = HyperOptSearch(space,
                              max_concurrent=args.num_cpus,
                              metric="test_ll",
                              mode="max")

        exp_name = 'tune_meta_vi_%s_kernel_%s' % (args.covar_module,
                                                  args.dataset)

        analysis = tune.run(train_reg,
                            name=exp_name,
                            search_alg=algo,
                            verbose=1,
                            local_dir=HPARAM_EXP_DIR,
                            **config)

    # Select N best configurations re-run train & test with 5 different seeds

    from experiments.hyperparam_search.util import select_best_configs

    if args.metric == 'test_ll':
        best_configs = select_best_configs(analysis,
                                           metric='test_ll',
                                           mode='max',
                                           N=args.n_test_runs)
    elif args.metric == 'test_rmse':
        best_configs = select_best_configs(analysis,
                                           metric='test_rmse',
                                           mode='min',
                                           N=args.n_test_runs)
    else:
        raise AssertionError('metric must be test_ll or test_rmse')

    test_configs = []
    for config in best_configs:
        for seed in TEST_SEEDS:
            test_config = copy.deepcopy(config)
            test_config.update({'random_seed': seed})
            test_configs.append(test_config)

    result_dicts = ray.get(
        [train_test.remote(config) for config in test_configs])

    result_df = pd.DataFrame(result_dicts)
    print(result_df.to_string())

    csv_file_name = os.path.join(
        HPARAM_EXP_DIR,
        '%s_%s.csv' % (exp_name, datetime.now().strftime("%b_%d_%Y_%H:%M:%S")))
    result_df.to_csv(csv_file_name)
    print("\nSaved result csv to %s" % csv_file_name)
Example #13
0
def main(args):
    ray.init(num_cpus=args.num_cpus,
             memory=3000 * 1024**2,
             object_store_memory=300 * 1024**2)

    def train_reg(config, reporter):
        sys.path.append(BASE_DIR)

        # 1) load / generate data
        from experiments.data_sim import provide_data
        data_train, data_valid, _ = provide_data(dataset=args.dataset,
                                                 seed=SEED)

        # 2) setup model
        from meta_learn.GPR_meta_pac import GPRegressionMetaLearnedPAC
        torch.set_num_threads(N_THREADS_PER_RUN)

        model = GPRegressionMetaLearnedPAC(data_train, **config)

        # 3) train and evaluate model
        with gpytorch.settings.max_cg_iterations(300):
            log_period = 5000
            train_iter = 0
            loss = 0.0
            diagnostics_dict = {}
            for i in range(config["num_iter_fit"] // log_period):
                loss, diagnostics_dict = model.meta_fit(verbose=False,
                                                        log_period=1000,
                                                        eval_period=100000,
                                                        n_iter=log_period)
                train_iter += log_period
                if i < config["num_iter_fit"] // log_period - 1:
                    reporter(timesteps_total=train_iter,
                             loss=loss,
                             test_rmse=math.nan,
                             test_ll=math.nan,
                             calib_err=math.nan,
                             **diagnostics_dict)

            ll, rmse, calib_err = model.eval_datasets(data_valid,
                                                      n_iter_meta_test=3000)
            reporter(timesteps_total=train_iter,
                     loss=loss,
                     test_rmse=rmse,
                     test_ll=ll,
                     calib_err=calib_err,
                     **diagnostics_dict)

    @ray.remote
    def train_test(config):

        results_dict = config

        try:
            sys.path.append(BASE_DIR)

            # 1) load / generate data
            from experiments.data_sim import provide_data
            data_train, _, data_test = provide_data(dataset=args.dataset,
                                                    seed=SEED)

            # 2) Fit model
            from meta_learn.GPR_meta_pac import GPRegressionMetaLearnedPAC
            torch.set_num_threads(N_THREADS_PER_RUN)
            with gpytorch.settings.max_cg_iterations(500):
                model = GPRegressionMetaLearnedPAC(data_train, **config)
                model.meta_fit(
                    data_test,
                    log_period=1000,
                    eval_period=100000,
                )

                # 3) evaluate on test set
                ll, rmse, calib_err = model.eval_datasets(
                    data_test, n_iter_meta_test=3000)

            results_dict.update(ll=ll, rmse=rmse, calib_err=calib_err)

        except Exception as e:
            print(e)
            results_dict.update(ll=np.nan, rmse=np.nan, calib_err=np.nan)

        return results_dict

    assert args.metric in ['test_ll', 'test_rmse']

    exp_name = 'tune_meta_pac_%s_kernel_%s' % (args.covar_module, args.dataset)

    if args.load_analysis:
        analysis_dir = os.path.join(HPARAM_EXP_DIR, exp_name)
        assert os.path.isdir(
            analysis_dir), 'load_analysis_from must be a valid directory'
        print('Loading existing tune analysis results from %s' % analysis_dir)
        analysis = Analysis(analysis_dir)
    else:
        space = {
            "task_kl_weight":
            hp.loguniform("task_kl_weight", math.log(5e-2), math.log(1e0)),
            "meta_kl_weight":
            hp.loguniform("meta_kl_weight", math.log(1e-7), math.log(1e0)),
            "lr":
            hp.loguniform("lr", math.log(1e-4), math.log(1e-3)),
            "lr_decay":
            hp.loguniform("lr_decay", math.log(0.92), math.log(0.97)),
            "posterior_lr_multiplier":
            hp.loguniform("posterior_lr_multiplier", math.log(1e0),
                          math.log(10.)),
            "svi_batch_size":
            hp.choice("svi_batch_size", [5, 10]),
            "task_batch_size":
            hp.choice("task_batch_size", [5, 20]),
        }

        config = {
            "num_samples": 150,
            "config": {
                "num_iter_fit": 40000,
                'kernel_nn_layers': [32, 32, 32, 32],
                'mean_nn_layers': [32, 32, 32, 32],
                'random_seed': SEED,
                'mean_module': 'NN',
                'covar_module': args.covar_module,
                'normalize_data': True,
                'cov_type': 'diag'
            },
            "stop": {
                "timesteps_total": 100000
            },
        }

        config["config"].update()

        # configs_to_evaluate = [{
        #             "task_kl_weight": 1.0,
        #             "meta_kl_weight": 1e-5,
        #             "lr": 1e-3,
        #             "lr_decay": 0.95,
        #             "posterior_lr_multiplier": 5.0,
        #             "svi_batch_size": 0,
        #             "task_batch_size": 0,
        #         },
        #        ]

        # Run hyper-parameter search

        algo = HyperOptSearch(
            space,
            max_concurrent=args.num_cpus,
            metric=args.metric,
            mode="max" if args.metric == 'test_ll' else "min",
        )

        analysis = custom_tune.run(train_reg,
                                   name=exp_name,
                                   search_alg=algo,
                                   verbose=1,
                                   raise_on_failed_trial=False,
                                   local_dir=HPARAM_EXP_DIR,
                                   resume=args.resume,
                                   **config)

    # Select N best configurations re-run train & test with 5 different seeds

    from experiments.hyperparam_search.util import select_best_configs

    if args.metric == 'test_ll':
        best_configs = select_best_configs(analysis,
                                           metric='test_ll',
                                           mode='max',
                                           N=args.n_test_runs)
    elif args.metric == 'test_rmse':
        best_configs = select_best_configs(analysis,
                                           metric='test_rmse',
                                           mode='min',
                                           N=args.n_test_runs)
    else:
        raise AssertionError('metric must be test_ll or test_rmse')

    test_configs = []
    for config in best_configs:
        for seed in TEST_SEEDS:
            test_config = copy.deepcopy(config)
            test_config.update({'random_seed': seed})
            test_configs.append(test_config)

    result_dicts = ray.get(
        [train_test.remote(config) for config in test_configs])

    result_df = pd.DataFrame(result_dicts)
    print(result_df.to_string())

    csv_file_name = os.path.join(
        HPARAM_EXP_DIR,
        '%s_%s.csv' % (exp_name, datetime.now().strftime("%b_%d_%Y_%H:%M:%S")))
    result_df.to_csv(csv_file_name)
    print("\nSaved result csv to %s" % csv_file_name)
Example #14
0
project_dir = os.path.dirname(os.path.join(os.getcwd(), __file__))
sys.path.append(os.path.normpath(os.path.join(project_dir, '..', '..')))

from experiments.utils.constants import RESULTS_PATH

series = 6
type_env = 2
dataset_id = 0
workload_id = 0
experiment_id = 0
algorithm = 'PPO'
trial = 'PPO_CloudSimV2_847c5_00000_0_fcnet_hiddens_0=20,fcnet_hiddens_1=20_2021-02-14_22-46-46'
experiment_folder_path = os.path.join(RESULTS_PATH, "series", str(series),
                                      "envs", str(type_env), "datasets",
                                      str(dataset_id), "workloads",
                                      str(workload_id), "experiments",
                                      str(experiment_id), str(algorithm),
                                      trial)

analysis = Analysis(experiment_folder_path)
df = analysis.trial_dataframes[experiment_folder_path]
selected_stats = [
    'episode_reward_mean', 'episodes_this_iter', 'timesteps_total',
    'episodes_total', 'experiment_id', 'custom_metrics/num_moves_mean',
    'custom_metrics/num_consolidated_mean',
    'custom_metrics/num_overloaded_mean'
]
df = df[selected_stats]
# each row of the df is the training iteration
a = 1
Example #15
0
from ray.tune import Analysis
import torch
import matplotlib.pyplot as plt
from core.dataloader import *
from core.model import *
from core.training import *
from core.evaluating import *
from plots.plots import *
from core.create_folder import *
from core.pred_sequence import *

folders = []
folders.append(
    "Run_w_11_timesteps_3_hiddenDim_1_layers_0.00021723989839730966_LR")
configs = []
analysis = Analysis("~/ray_results/Jan21")
configs.append(analysis.get_best_config(metric="error", mode="max"))
for i in range(2, 17):
    analysis = Analysis("~/ray_results/" + str(i) + "forward")
    config = analysis.get_best_config(metric="error", mode="max")
    configs.append(config)
    print(config)
    folder_name = 'Predicting' + str(config["num_forward"]) + '_w_' + str(
        config["timesteps"]) + '_timesteps_' + str(
            config["hidden_dim"]) + '_hiddenDim_' + str(
                config["num_layers"]) + '_layers_' + str(config["lr"]) + "_LR"
    folders.append(folder_name)
    #print(folder_name)
print(len(folders))
print(len(configs))
model_keys = []
Example #16
0
def raytune_analysis(exp_dir, save, skip, mode, metric):
    analysis = Analysis(exp_dir, default_metric=metric, default_mode=mode)
    plot_ray_analysis(analysis, save=save, skip=skip)
    analyze_ray_experiment(exp_dir, default_metric=metric, default_mode=mode)
Example #17
0
def get_best_info(exp_dir,
                  metrics=['vl_score', 'vl_loss'],
                  ascending=[False, True],
                  mode='auto'):
    if mode == 'auto':
        analysis = Analysis(exp_dir, 'vl_score', 'max')
        df = analysis.dataframe()
        df = df.sort_values(metrics, ascending=ascending)
        trial_dir = df.iloc[0][-1]

        min_ = 10000
        for f in os.listdir(trial_dir):
            if 'checkpoint' in f:
                idx = int(f.split('_')[1])
                min_ = min(min_, idx)
        chk_file = os.path.join(trial_dir, f'checkpoint_{min_}', 'model.pth')
        with open(os.path.join(trial_dir, 'params.json')) as f:
            config = json.load(f)
        with open(os.path.join(trial_dir, 'result.json')) as f:
            res = [json.loads(i) for i in f]
            best_res = res[min_ - 1]

        return {
            'trial_dir': trial_dir,
            'chk_file': chk_file,
            'config': config,
            'tr_loss': best_res['tr_loss'],
            'tr_score': best_res['tr_score'],
            'vl_loss': best_res['vl_loss'],
            'vl_score': best_res['vl_score']
        }

    elif mode == 'manual':
        best_dict = {
            'trial_dir': None,
            'chk_file': None,
            'config': None,
            'tr_loss': float('inf'),
            'tr_score': 0,
            'vl_loss': float('inf'),
            'vl_score': 0
        }
        dirs = [
            part_dir for part_dir in os.listdir(exp_dir)
            if os.path.isdir(os.path.join(exp_dir, part_dir))
        ]
        for part_dir in dirs:
            trial_dir = os.path.join(exp_dir, part_dir)
            min_ = 400
            for f in os.listdir(trial_dir):
                if 'checkpoint' in f:
                    idx = int(f.split('_')[1])
                    min_ = min(min_, idx)
            with open(os.path.join(trial_dir, 'result.json')) as f:
                for i, d in enumerate(f):
                    if i + 1 == min_:
                        curr = json.loads(d)
                        if best_dict['vl_score'] < curr[
                                'vl_score']:  #or (best_dict['vl_score'] == curr['vl_score'] and best_dict['vl_loss'] > curr['vl_loss']):
                            with open(os.path.join(trial_dir,
                                                   'params.json')) as f:
                                config = json.load(f)
                            best_dict = {
                                'trial_dir':
                                trial_dir,
                                'chk_file':
                                os.path.join(trial_dir,
                                             f'checkpoint_{min_}/model.pth'),
                                'config':
                                config,
                                'tr_loss':
                                curr['tr_loss'],
                                'tr_score':
                                curr['tr_score'],
                                'vl_loss':
                                curr['vl_loss'],
                                'vl_score':
                                curr['vl_score']
                            }
        return best_dict
Example #18
0
 def testDataframe(self):
     analysis = Analysis(self.test_dir)
     df = analysis.dataframe()
     self.assertTrue(isinstance(df, pd.DataFrame))
     self.assertEquals(df.shape[0], self.num_samples * 2)
Example #19
0
def get_best_params_dir(opt):
    analysis = Analysis("../ray_tune/{}".format(opt['folder']))
    df = analysis.dataframe(metric=opt['metric'], mode='max')
    best_params_dir = df.sort_values(
        'accuracy', ascending=False)['logdir'].iloc[opt['index']]
    return best_params_dir
Example #20
0
 def testBestConfigIsLogdir(self):
     analysis = Analysis(self.test_dir)
     for metric, mode in [(self.metric, "min"), (self.metric, "max")]:
         logdir = analysis.get_best_logdir(metric, mode=mode)
         best_config = analysis.get_best_config(metric, mode=mode)
         self.assertEquals(analysis.get_all_configs()[logdir], best_config)
Example #21
0
"""
from ray.tune import Analysis
import torch
import matplotlib.pyplot as plt
from core.dataloader import *
from core.model import *
from core.training import *
from core.evaluating import *
from plots.plots import *
from core.create_folder import *
from core.pred_sequence import *
configs = []
#analysis_GSPC = Analysis("~/ray_results/1forward_returns_GSPC")
#analysis_IXIC = Analysis("~/ray_results/1forward_returns_IXIC")
#analysis_N225 = Analysis("~/ray_results/1forward_returns_N225")
analysis_DJI = Analysis("~/ray_results/1_forward_returns_DJI")
#configs.append(analysis_GSPC.get_best_config(metric="error", mode="max"))
#configs.append(analysis_IXIC.get_best_config(metric="error", mode="max"))
#configs.append(analysis_N225.get_best_config(metric="error", mode="max"))
configs.append(analysis_DJI.get_best_config(metric="error", mode="max"))
print(configs)
configs_np = np.empty(shape=(4, 6))
datasets = ["GSPC", "IXIC", "N225", "DJI"]
for i in range(4):
    configs_np[i][0] = datasets[i]
    configs_np[i][1] = configs[i]["num_layers"]
    configs_np[i][2] = configs[i]["hidden_dim"]
    configs_np[i][3] = configs[i]["lr"]
    configs_np[i][4] = configs[i]["timesteps"]
    configs_np[i][5] = configs[i]["dropout"]
configs_df = pd.DataFrame(configs_np,