Example #1
0
def main():
    alg = CMP(cfg)
    print('1. Model [{}]'.format('READY'))
    try:
        if args.robot:
            baxter = RemoteBaxter(args.ip, args.port)
            res = baxter.connect()
            if not res:
                print('2. Robot [{}]'.format('FAILED'))
                raise RuntimeError
            print('2. Robot [{}]'.format('READY'))
            print('Back to init pose..')
            baxter.gotoPose(init_position, init_orintation)
        else:
            print('2. Bypass Robot [{}]'.format('READY'))
        # cam_p = mp.Process(target=camera_process_opencv, args=(args.camera,))
        cam_p = mp.Process(target=camera_process_imglist, args=(imgList, ))
        cam_p.start()
        img = cam_queue.get()
        if not img:
            print('3. Camera [{}]'.format('FAILED'))
            raise RuntimeError
        else:
            print('3. Camera [{}]'.format('READY'))
        print('4. Commander [{}]'.format('READY'))
        print('=======Command Mode=======')
        i = -1
        while True:
            i += 1
            print('------ Round {} ------'.format(i))
            cmd = int(input('Cmd:'))
            if cmd == -1:
                print('User specified exit..')
                print('------ Round end ------\n')
                break
            elif 0 <= cmd < cfg.number_of_tasks:
                print('Start to compute traj for task [{}:{}]'.format(
                    cmd, tasks[cmd]))
                cam_retrieve.value = 1
                img = cam_queue.get()
                if img is False:
                    print('Camera shut down, stop')
                    print('------ Round end ------\n')
                    break
                # TODO: pre-process image
                img = cv2.resize(img, cfg.image_size) / 255.
                img = img[..., [2, 1, 0]]
                position_traj = RBF.generate(
                    alg.eval(img, cmd)[0], cfg.number_time_samples)
                position_traj = np.hstack([
                    position_traj, init_position[-1] * np.ones(
                        (len(position_traj), 1))
                ])
                orintation_traj = init_orintation[np.newaxis, ...].repeat(
                    len(position_traj), 0)
                print('Finish traj computation for task [{}]'.format(cmd))
                # plot the traj and img
                display(cfg, [position_traj], [img], [0])
                choice = input('Confirmed?(y/n):')
                if choice != 'y':
                    print('Traj canceled')
                    print('------ Round end ------\n')
                    continue
                print('Traj confirmed')
                # confirmed the result
                if args.robot:
                    start_t = time.time()
                    res = baxter.followTraj(position_traj,
                                            orintation_traj,
                                            continuous=True)
                    if res:
                        print('Task [{}] exec success!'.format(cmd))
                    else:
                        print('Task [{}] exec failed!'.format(cmd))
                    print('Time cost:{:.4f}s'.format(time.time() - start_t))
                    print('Back to init pose..')
                    baxter.gotoPose(init_position, init_orintation)
                else:
                    print('Bypass exec..')
                print('------ Round end ------\n')
            else:
                print('Please input an valid task number!')
                print('------ Round end ------\n')
        if args.robot:
            print('5. Disconnecting with robot..')
            baxter.close()
        else:
            print('5. Bypass disconnecting with robot..')
    except:
        print('Something going wrong, exit.')
        cam_exit.value = 1
        sys.exit(1)

    print('6. Finish and clean-up [{}]'.format('DONE'))
    cam_exit.value = 1
    sys.exit(0)
Example #2
0
    def test(self):
        def batchToVariable(traj_batch):
            batch_im = torch.zeros(self.cfg.batch_size_test,
                                   self.cfg.image_channels,
                                   self.cfg.image_size[0],
                                   self.cfg.image_size[1])
            batch_z = torch.normal(
                torch.zeros(self.cfg.batch_size_test,
                            self.cfg.number_of_hidden),
                torch.ones(self.cfg.batch_size_test,
                           self.cfg.number_of_hidden))
            batch_w = torch.zeros(self.cfg.batch_size_test,
                                  self.cfg.number_of_MP_kernels,
                                  self.cfg.trajectory_dimension)

            batch_target = torch.zeros(self.cfg.batch_size_test, 2)

            if self.cfg.img_as_task:
                batch_c = torch.zeros(self.cfg.batch_size_test,
                                      self.cfg.image_channels,
                                      self.cfg.object_size[0],
                                      self.cfg.object_size[1])
            else:
                batch_c = torch.zeros(self.cfg.batch_size_test,
                                      self.cfg.number_of_tasks)

            for i, b in enumerate(traj_batch):
                batch_w[i] = torch.from_numpy(b[0])
                batch_target[i] = torch.from_numpy(b[-1])
                if self.cfg.img_as_task:
                    batch_c[i] = torch.from_numpy(b[2].transpose(2, 0, 1))
                    batch_im[i] = torch.from_numpy(b[3].transpose(2, 0, 1))
                else:
                    batch_c[i, b[1]] = 1.
                    batch_im[i] = torch.from_numpy(b[2].transpose(2, 0, 1))

            if self.use_gpu:
                return torch.autograd.Variable(batch_z.cuda(), volatile=True),\
                    torch.autograd.Variable(batch_c.cuda(), volatile=True),\
                    torch.autograd.Variable(batch_im.cuda(), volatile=True),\
                    batch_target,\
                    batch_w
            else:
                return torch.autograd.Variable(batch_z, volatile=True),\
                    torch.autograd.Variable(batch_c, volatile=True),\
                    torch.autograd.Variable(batch_im, volatile=True),\
                    batch_target,\
                    batch_w

        for batch in generator_test:
            break
        _, c, im, target, wgt = batchToVariable(batch)
        im_c = self.condition_net(im, c)
        z = self.encoder.sample(None,
                                im_c,
                                reparameterization=False,
                                prior=True)
        if self.cfg.use_DMP:
            p0 = np.tile(
                np.asarray((0., self.cfg.image_y_range[0]), dtype=np.float32),
                (self.cfg.batch_size_test, 1))
            w = self.decoder.sample(z, im_c).cpu().data.numpy()
            tauo = tuple(
                dmp.generate(w,
                             target.cpu().numpy(),
                             self.cfg.number_time_samples,
                             p0=p0,
                             init=True))
            tau = tuple(
                dmp.generate(wgt.cpu().numpy(),
                             target.cpu().numpy(),
                             self.cfg.number_time_samples,
                             p0=p0,
                             init=True))
        else:
            tauo = tuple(
                RBF.generate(wo, self.cfg.number_time_samples)
                for wo in self.decoder.sample(z, im_c).cpu().data.numpy())
            tau = tuple(
                RBF.generate(wo, self.cfg.number_of_MP_kernels) for wo in wgt)

        if self.cfg.img_as_task:
            _, cls, _, imo, _ = tuple(zip(*batch))
        else:
            _, cls, imo, _ = tuple(zip(*batch))
        env = self.cfg.env(self.cfg)
        img = display(self.cfg, tauo, imo, cls, interactive=True)
        img_gt = display(self.cfg, tau, imo, cls, interactive=True)
        feature = self.condition_net.feature_map(im).data.cpu().numpy()
        if self.cfg.img_as_task:
            return img, img_gt, feature, c
        else:
            return img, img_gt, feature