Example #1
0
    def max(self, generator, postprocessor=None):
        if postprocessor is None:

            def postprocessor(value):
                return value

        if self.distributed_max:
            local_list_indices = list(
                range(self.mpi_comm.rank, len(self._list), self.mpi_comm.size))
            # start from index rank and take steps of length equal to size
        else:
            local_list_indices = list(range(len(self._list)))
        values = array(len(local_list_indices))
        values_with_postprocessing = array(len(local_list_indices))
        for i in range(len(local_list_indices)):
            values[i] = generator(self._list[local_list_indices[i]])
            values_with_postprocessing[i] = postprocessor(values[i])
        if self.distributed_max:
            local_i_max = argmax(values_with_postprocessing)
            local_value_max = values[local_i_max]
            (global_value_max,
             global_i_max) = parallel_max(local_value_max,
                                          local_list_indices[local_i_max],
                                          postprocessor, self.mpi_comm)
            assert isinstance(global_i_max, tuple)
            assert len(global_i_max) == 1
            global_i_max = global_i_max[0]
        else:
            global_i_max = argmax(values_with_postprocessing)
            global_value_max = values[global_i_max]
        return (global_value_max, global_i_max)
Example #2
0
def _abs(vector: Vector.Type()):
    # Note: PETSc offers VecAbs and VecMax, but for symmetry with the matrix case we do the same by hand
    vec = to_petsc4py(vector)
    row_start, row_end = vec.getOwnershipRange()
    i_max = None
    value_max = None
    for i in range(row_start, row_end):
        val = vec.getValue(i)
        if value_max is None or fabs(val) > fabs(value_max):
            i_max = i
            value_max = val
    assert i_max is not None
    assert value_max is not None
    #
    mpi_comm = vec.comm.tompi4py()
    (global_value_max, global_i_max) = parallel_max(value_max, (i_max, ), fabs, mpi_comm)
    return AbsOutput(global_value_max, global_i_max)
Example #3
0
def _abs(matrix: Matrix.Type()):
    # Note: PETSc offers a method MatGetRowMaxAbs, but it is not wrapped in petsc4py. We do the same by hand
    mat = to_petsc4py(matrix)
    row_start, row_end = mat.getOwnershipRange()
    i_max, j_max = None, None
    value_max = None
    for i in range(row_start, row_end):
        cols, vals = mat.getRow(i)
        for (c, v) in zip(cols, vals):
            if value_max is None or fabs(v) > fabs(value_max):
                i_max = i
                j_max = c
                value_max = v
    assert i_max is not None
    assert j_max is not None
    assert value_max is not None
    #
    mpi_comm = mat.comm.tompi4py()
    (global_value_max, global_ij_max) = parallel_max(value_max, (i_max, j_max), fabs, mpi_comm)
    return AbsOutput(global_value_max, global_ij_max)