ns.Continuant, graph=g, comment=Literal('Material entity. Examples: cells, molecules, joints')) occ = Class( ns.Occurent, graph=g, comment=Literal('Occuring processes, which start and end at some point')) condition = Class( ns.Condition, graph=g, comment=Literal('Medical condition. Could be a pathology or a disorder')) # ## Properties # Main properties, such as `capable of`, `negatively regulates` capable_of = Property(ns.capable_of, graph=g, domain=[occ], range=[occ]) negatively_regulates = Property(ns.negatively_regulates, graph=g, domain=[occ], range=[occ]) positively_regulates = Property(ns.positively_regulates, graph=g, domain=[occ], range=[occ]) reduces_levels_of = Property(ns.reduces_levels_of, graph=g, domain=[occ], range=[con]) increases_levels_of = Property(ns.increases_levels_of, graph=g, domain=[occ],
ns.identifier, comment=Literal('defined by: Asan Agibetov, Marta Ondresik, Ernesto Jimenez-Ruiz'), graph=g) # ## Main classes # con = Class(ns.Continuant, graph=g, comment=Literal('Material entity. Examples: cells, molecules, joints')) occ = Class(ns.Occurent, graph=g, comment=Literal('Occuring processes, which start and end at some point')) condition = Class(ns.Condition, graph=g, comment=Literal('Medical condition. Could be a pathology or a disorder')) # ## Properties # Main properties, such as `capable of`, `negatively regulates` # capable_of = Property(ns.capable_of, graph=g, domain=[occ], range=[occ]) negatively_regulates = Property(ns.negatively_regulates, graph=g, domain=[occ], range=[occ]) positively_regulates = Property(ns.positively_regulates, graph=g, domain=[occ], range=[occ]) # reduces_levels_of = Property(ns.reduces_levels_of, graph=g, domain=[occ], range=[con]) # increases_levels_of = Property(ns.increases_levels_of, graph=g, domain=[occ], range=[con]) # inhibits = Property(ns.inhibits, graph=g, domain=[occ], range=[occ]) # activates = Property(ns.activates, graph=g, domain=[occ], range=[occ]) results_in = Property(ns.results_in, graph=g, domain=[occ], range=[occ]) causes = Property(ns.causes, graph=g, domain=[occ], range=[occ]) # ## Atomic continuants # # We model basic classes in our hypothesis ontology, which represent bio # macro-molecules, biomolecules and cells in the cartillage # # * chondrocytes (cells) # * cytokines (biomolecules), pro-inflammatory guys
def start_property(graph): return Property( identifier=URIRef(SCENARIO['start']), subPropertyOf=[OWL['topObjectProperty'], SCENARIO['start']], graph=graph)
def initial_property(graph): return Property( identifier=URIRef(SCENARIO['initial']), subPropertyOf=[OWL['topObjectProperty'], SCENARIO['initial']], graph=graph)
def namespace_property(graph): return Property(identifier=URIRef(SCENARIO['time']), baseType=OWL['AnnotationProperty'], graph=graph)
from rdflib import Graph, Namespace from rdflib.extras.infixowl import OWL_NS, Class, Restriction, Property from rdflib.namespace import NamespaceManager ccf = Namespace('http://purl.org/ccf/') namespace_manager = NamespaceManager(Graph()) namespace_manager.bind('ccf', ccf, override=False) namespace_manager.bind('owl', OWL_NS, override=False) g = Graph() g.namespace_manager = namespace_manager part_of = Property(ccf.part_of, graph=g) organ = Class( ccf.Organ, graph=g, subClassOf=[Restriction(part_of, graph=g, someValuesFrom=ccf.Body)]) organ_part = Class(ccf.OrganPart, graph=g) organ_part.subClassOf = [Restriction(part_of, graph=g, someValuesFrom=organ)] kidney_capsule = Class(ccf.KidneyCapsule, graph=g) kidney_capsule.subClassOf = [ ccf.OrganPart, Restriction(part_of, graph=g, someValuesFrom=ccf.Kidney) ] kidney = Class(ccf.Kidney, graph=g, subClassOf=[organ]) left_kidney = Class(ccf.LeftKidney, graph=g, subClassOf=[kidney])