def __init__(self, filename):

        csvData = readData.readCSV(self, filename)

        self.data = csvData.data
        self.Class = csvData.Class
        self.attributes = csvData.attributes
        self.attributeNames = csvData.attributeNames
        self.trainingValues = csvData.trainingValues

        self.root = self.VIH(self.trainingValues, self.Class, self.attributes)
 def __init__(self, filename):
     csvData = readData.readCSV(self, filename)
     self.Class = csvData.Class
     self.data = csvData.data
Example #3
0
        tot_fn = np.zeros(10)
        tot_fp = np.zeros(10)
        tot_time = np.zeros(10)
        for seed in range(10):
            detail_csv = open(directory + "/detail_results.csv", "a")
            csvWriter_detail = csv.writer(detail_csv, delimiter=',')
            try:
                os.remove(directory + '/result_N' + str(num_nurses) + '_seed' +
                          str(seed) + '.csv')
            except OSError:
                pass
            start = time.clock()
            rd.learnConstraints(dataDir, numSol, num_nurses, 1, directory,
                                numFiles, seed)
            end = time.clock()
            data = rd.readCSV(directory + '/result_N' + str(num_nurses) +
                              '_seed' + str(seed) + '.csv')

            data_transpose = list(zip(*data))
            data_int = np.zeros(
                [len(data_transpose),
                 len(data_transpose[0]) - 1])
            for i in range(len(data_transpose)):
                for j in range(1, len(data_transpose[i])):
                    if data_transpose[i][j] != '':
                        data_int[i, j - 1] = int(data_transpose[i][j])

            bounds_learned = np.zeros([num_constrType, num_constr])
            k = 0

            for i in range(len(data_transpose)):
                if (i + 1) % 7 != 0:
Example #4
0
                     numFiles, directory + "/solutions", constrList, bounds)

try:
    os.remove(directory + '/result_N' + str(num_nurses) + '_forAll.csv')
except OSError:
    pass
rd.learnConstraintsForAll(dataDir, num_nurses, 1, directory)

bounds_prev = np.zeros([num_constrType, num_constr])

objVal = 0
minObjVal = 0
i = 0
for fl in glob.glob(directory + "/solutions" + "/*objVal" + str(num_nurses) +
                    "*.csv"):
    tmp = float(rd.readCSV(fl)[0][0])
    if i == 0:
        minObjVal = tmp
    else:
        minObjVal = min(minObjVal, tmp)
    objVal += tmp
    i += 1
objVal = objVal / numFiles

data = rd.readCSV(directory + '/result_N' + str(num_nurses) + '_forAll.csv')
data_transpose = list(zip(*data))
data_int = np.zeros([len(data_transpose), len(data_transpose[0]) - 1])
for i in range(len(data_transpose)):
    for j in range(1, len(data_transpose[i])):
        if data_transpose[i][j] != '':
            data_int[i, j - 1] = int(data_transpose[i][j])