def main(): data, targets = rf.read_letters() clf = RandomForestClassifier(n_estimators=10, max_depth=None, min_samples_split=1, random_state=0) scores = cross_val_score(clf, data, targets) print("Forest_Letters: ", end="") print(scores.mean() * 100) data, targets = rf.read_abalone() clf = RandomForestClassifier(n_estimators=10, max_depth=None, min_samples_split=1, random_state=0) scores = cross_val_score(clf, data, targets) print("Forest_Abalone: ", end="") print(scores.mean() * 100) data, targets = rf.read_lungs() clf = RandomForestClassifier(n_estimators=10, max_depth=None, min_samples_split=1, random_state=0) scores = cross_val_score(clf, data, targets) print("Forest_Lungs: ", end="") print(scores.mean() * 100)
def main(): data, targets = rf.read_letters() clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5) scores = cross_val_score(clf, data, targets) print("Bagging_Letters: ", end="") print(scores.mean() * 100) data, targets = rf.read_abalone() clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5) scores = cross_val_score(clf, data, targets) print("Bagging_Abalone: ", end="") print(scores.mean() * 100) data, targets = rf.read_lungs() clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5) scores = cross_val_score(clf, data, targets) print("Bagging_Lungs: ", end="") print(scores.mean() * 100)
def main(): data, targets = rf.read_letters() clf = KNeighborsClassifier(n_neighbors=2, algorithm='ball_tree') scores = cross_val_score(clf, data, targets) print("KNN_Letters: ", end="") print(scores.mean() * 100) data, targets = rf.read_abalone() clf = KNeighborsClassifier(n_neighbors=2, algorithm='ball_tree') scores = cross_val_score(clf, data, targets) print("KNN_Abalone: ", end="") print(scores.mean() * 100) data, targets = rf.read_lungs() clf = KNeighborsClassifier(n_neighbors=2, algorithm='ball_tree') scores = cross_val_score(clf, data, targets) print("KNN_Lungs: ", end="") print(scores.mean() * 100)
def main(): data, targets = rf.read_letters() clf = AdaBoostClassifier(n_estimators=100, learning_rate=.007) scores = cross_val_score(clf, data, targets) print("Adaboost_Letters: ", end="") print(scores.mean() * 100) data, targets = rf.read_abalone() clf = AdaBoostClassifier(n_estimators=100, learning_rate=.12) scores = cross_val_score(clf, data, targets) print("Adaboost_Abalone: ", end="") print(scores.mean() * 100) data, targets = rf.read_lungs() clf = AdaBoostClassifier(n_estimators=100, learning_rate=.1) scores = cross_val_score(clf, data, targets) print("Adadboost_Lungs: ", end="") print(scores.mean() * 100)
def main(): data, targets = rf.read_letters() clf = tree.DecisionTreeClassifier(criterion='entropy') scores = cross_val_score(clf, data, targets) print("DecisionTree_Letters", end="") print(scores.mean() * 100) data, targets = rf.read_abalone() clf = tree.DecisionTreeClassifier(criterion='entropy') scores = cross_val_score(clf, data, targets) print("DecisionTree_Abalone", end="") print(scores.mean() * 100) data, targets = rf.read_lungs() clf = tree.DecisionTreeClassifier(criterion='entropy') scores = cross_val_score(clf, data, targets) print("DecisionTree_Lungs", end="") print(scores.mean() * 100)
def main(): data, targets = rf.read_letters() clf = svm.SVC() scores = cross_val_score(clf, data, targets) print("SVM_Letters: ", end="") print(scores.mean() * 100) data, targets = rf.read_abalone() clf = svm.SVC() scores = cross_val_score(clf, data, targets) print("SVM_Abalone: ", end="") print(scores.mean() * 100) data, targets = rf.read_lungs() clf = svm.SVC() scores = cross_val_score(clf, data, targets) print("SVM_Lungs: ", end="") print(scores.mean() * 100)