inputIsDouble, gridsize): ion = rf.read_ion(infile, isPadded, inputIsDouble, gridsize) dens = rf.read_dens(densfile, isPadded, double_precision, gridsize) meanIon = np.mean(ion * dens, dtype=np.float64) / np.mean(dens, dtype=np.float64) return meanIon inifile = sys.argv[1] inputIsDouble = np.int32(sys.argv[2]) outputfile = sys.argv[3] lines = rp.read_inifile(inifile) redshiftfile = rp.identify_string(lines, rp.redshiftfile_str, rp.splitting_str) #sys.argv[4] ionfile = rp.identify_string(lines, rp.ionfile_str, rp.splitting_str) #sys.argv[1] densfile = rp.identify_string(lines, rp.densfile_str, rp.splitting_str) double_precision = rp.identify_int(lines, rp.double_precision_str, rp.splitting_str) isPadded = rp.identify_int(lines, rp.padded_str, rp.splitting_str) #np.int32(sys.argv[3]) isPadded_factor = isPadded**(1. / 3.) if (isPadded != 0): gridsize = np.int32( rp.identify_int(lines, rp.gridsize_str, rp.splitting_str) / isPadded_factor) boxsize = rp.identify_float(lines, rp.boxsize_str, rp.splitting_str) / isPadded_factor
def redshift_from_time_flatuniverse(zmax, time): tmp = (omega_l / omega_m)**0.5 tmp2 = np.sinh(1.5 * H0 * omega_l**0.5 * time + np.arcsinh(tmp * (1. + zmax)**-1.5)) return (tmp / tmp2)**(2. / 3.) - 1. inifile = sys.argv[1] inputIsDouble = np.int32(sys.argv[2]) cut_slice = int(sys.argv[3]) lines = rp.read_inifile(inifile) redshiftfile = rp.identify_string(lines, rp.redshiftfile_str, rp.splitting_str) ionfile = rp.identify_string(lines, rp.ionfile_str, rp.splitting_str) double_precision = rp.identify_int(lines, rp.double_precision_str, rp.splitting_str) isPadded = rp.identify_int(lines, rp.padded_str, rp.splitting_str) isPadded_factor = isPadded**(1. / 3.) if (isPadded != 0): gridsize = np.int32( rp.identify_int(lines, rp.gridsize_str, rp.splitting_str) / isPadded_factor) boxsize = rp.identify_float(lines, rp.boxsize_str, rp.splitting_str) / isPadded_factor else: gridsize = rp.identify_int(lines, rp.gridsize_str, rp.splitting_str) boxsize = rp.identify_float(lines, rp.boxsize_str, rp.splitting_str)