def load_data(n_examples, im_width, im_height, type_data): """ Output: Batch training data sze_of_img_all: Img size of each image in the batch group_img: stacked resized training images [n, 244,244,3] np.array(training_data): traning probability output np.array(encoded_training): training regression output NOTE USED np.array(selected_anchors): np.array(selected_anchors_normal): """ shw_example = False JPEG_images, Annotation_images, df = read_voc.load_data_full( type_data, shw_example) bbxs_sizes = read_voc.getting_all_bbx(Annotation_images, type_data, df) training_data = [] encoded_training = [] selected_anchors = [] selected_anchors_normal = [] cnt = 0 sze_of_img_all = np.zeros([len(n_examples), 2]) group_img = np.zeros([len(n_examples), im_width, im_height, 3], dtype=np.uint8) for n_example in n_examples: img = Image.open(JPEG_images[n_example]) sze_of_img = img.size show_img_ = False #print bbxs_sizes[n_example] img = np.array(img.resize((im_width, im_height), Image.ANTIALIAS)) group_img[cnt] = img sze_of_img_all[cnt] = sze_of_img cnt += 1 bbxs_sizes[n_example] = resizing_targets(bbxs_sizes[n_example], sze_of_img, im_width, im_height) print("bbxs_sizes first example", bbxs_sizes[n_example]) #training_data, encoded_training, selected_anchors = get_training_data(centres_mmxy, bbxs_sizes[1]) single_training_data, single_encoded_training, single_selected_anchors, single_selected_anchors_normal = new_get_training_data( centres_mmxy, bbxs_sizes[n_example]) training_data.append(single_training_data) encoded_training.append(single_encoded_training) selected_anchors.append(single_selected_anchors) selected_anchors_normal.append(single_selected_anchors_normal) print img.dtype, group_img.dtype, np.expand_dims(img, axis=0).dtype if show_img_: _, fig1 = plt.subplots(1) #fig1.axis([-600, 600, -600, 600]) #print newImaa.shape fig1.imshow(group_img[cnt - 1], vmin=0, vmax=255) #fig1.imshow(img, vmin=0, vmax=255) draw_bbx(single_selected_anchors, fig1, sze_of_img, im_width, im_height, True) plt.show() return sze_of_img_all, group_img, np.array(training_data), np.array( encoded_training), np.array(selected_anchors), np.array( selected_anchors_normal)
def load_data(n_examples, im_width, im_height, type_data): shw_example = False JPEG_images, Annotation_images, df = read_voc.load_data_full( type_data, shw_example) bbxs_sizes = read_voc.getting_all_bbx(Annotation_images, type_data, df) training_data = [] encoded_training = [] selected_anchors = [] selected_anchors_normal = [] cnt = 0 group_img = np.zeros([len(n_examples), im_width, im_height, 3]) for n_example in n_examples: img = Image.open(JPEG_images[n_example]) sze_of_img = img.size show_img_ = True #print bbxs_sizes[n_example] img = np.array(img.resize((im_width, im_height), Image.ANTIALIAS)) group_img[cnt] = img cnt += 1 if show_img_: _, fig1 = plt.subplots(1) #fig1.axis([-600, 600, -600, 600]) fig1.imshow(img) plt.show() bbxs_sizes[n_example] = resizing_targets(bbxs_sizes[n_example], sze_of_img, im_width, im_height) print("bbxs_sizes first example", bbxs_sizes[n_example]) #training_data, encoded_training, selected_anchors = get_training_data(centres_mmxy, bbxs_sizes[1]) single_training_data, single_encoded_training, single_selected_anchors, single_selected_anchors_normal = new_get_training_data( centres_mmxy, bbxs_sizes[n_example]) training_data.append(single_training_data) encoded_training.append(single_encoded_training) selected_anchors.append(single_selected_anchors) selected_anchors_normal.append(single_selected_anchors_normal) return group_img, np.array(training_data), np.array( encoded_training), np.array(selected_anchors), np.array( selected_anchors_normal)
im_width = 224 im_height = 224 print "good till here1" bbx_size = [8, 16, 32] #[8, 64, 128]#[8, 64, 128]#[8, 16, 32] bbx_ratio = [1, 1 / 1.5, 1.5] #[1, 0.5, 2] centres, centres_mmxy = gen_anchor_bx(bbx_size, bbx_ratio, im_width, im_height) print 'centres', len(centres) print 'centres_mmxy', len(centres_mmxy) ####Loading data###### type_data = '' shw_example = False n_example = 215 #25#432 JPEG_images, Annotation_images, df = read_voc.load_data_full( type_data, shw_example) bbxs_sizes = read_voc.getting_all_bbx(Annotation_images, type_data, df) #print "bbxs_sizes", bbxs_sizes im_placeholder = tf.placeholder(tf.float32, [None, im_height, im_width, 3]) y_ = tf.placeholder(tf.float32, [None, 9 * 14 * 14, 2], name='ob_prob') y_reg = tf.placeholder(tf.float32, [None, 9 * 14 * 14, 4], name='ob_reg') net_cnn, net2, net1, logits = netvgg(im_placeholder, is_training=False) sum_yreg = tf.reduce_sum(y_reg, axis=-1, keep_dims=True) #sum_yreg = tf.cast(sum_yreg, tf.float32) print "SUM!!!!!!!!!!!!!!", sum_yreg sum_yreg = (tf.not_equal(sum_yreg, 0)) sum_yreg = tf.cast(sum_yreg, tf.float32)