Example #1
0
methods = [
    '-tmi',
    '-toe',
    '-tmmc',
]
for i in range(len(methods)):
    method = methods[i]
    fbase = 'data/lv/ww%.2f-ff%.2f-%gx%g%s' % (ww, ff, lenx, lenyz, method)
    fname = fbase + '-density.dat'
    try:
        minT = readandcompute.minT(fname)
        convergedT = readandcompute.convergedT(fname)

        for T in Ts:
            if T >= minT and T >= convergedT * 0.8:
                density, x = readandcompute.density_x(fbase, T)
                plt.plot(x / 2, density, color(T) + lines[i])
                if first_method or method == the_first_method:
                    if first_temperature[i]:
                        plt.plot(x / 2,
                                 density,
                                 color(T) + lines[i],
                                 label='T=%g %s (converged to %.2g)' %
                                 (T, method[1:], convergedT))
                        first_temperature[i] = False
                    else:
                        plt.plot(x / 2,
                                 density,
                                 color(T) + lines[i],
                                 label='T=%g' % T)
                    the_first_method = method
Example #2
0
matplotlib.rc("font", **{"family": "serif", "serif": ["Computer Modern"]})
matplotlib.rc("text", usetex=True)

import readandcompute

ww = float(sys.argv[1])
# arg ww = [1.3]
ff = float(sys.argv[2])
# arg ff = [0.1]
lenx = float(sys.argv[3])
# arg lenx = [50,100]
lenyz = float(sys.argv[4])
# arg lenyz = [10]
T = float(sys.argv[5])
# arg T = [1.0,10.0]

plt.figure()

density, x = readandcompute.density_x("data/lv/ww%.2f-ff%.2f-%gx%g" % (ww, ff, lenx, lenyz), T)
plt.plot(x / 2, density)

plt.ylim(0)
plt.xlabel(r"$z/\sigma$")
plt.ylabel(r"$\eta$")
plt.title(r"$\eta(z)$ with $\lambda = %g$, $\eta=%g$, and $T/\epsilon = %g$" % (ww, ff, T))

plt.savefig("figs/liquid-vapor-ww%.2f-ff%.2f-%gx%g-T%.2g.pdf" % (ww, ff, lenx, lenyz, T))

plt.show()
Example #3
0
first_method = True
the_first_method = ''
first_temperature = [True, True, True]
methods = ['-tmi', '-toe', '-tmmc', ]
for i in range(len(methods)):
    method = methods[i]
    fbase = 'data/lv/ww%.2f-ff%.2f-%gx%g%s' % (ww,ff,lenx,lenyz,method)
    fname = fbase + '-density.dat'
    try:
        minT = readandcompute.minT(fname)
        convergedT = readandcompute.convergedT(fname)

        for T in Ts:
            if T >= minT and T >= convergedT*0.8:
                density, x = readandcompute.density_x(fbase, T)
                plt.plot(x/2, density, color(T)+lines[i])
                if first_method or method == the_first_method:
                    if first_temperature[i]:
                        plt.plot(x/2, density, color(T)+lines[i],
                                 label='T=%g %s (converged to %.2g)' % (T, method[1:], convergedT))
                        first_temperature[i] = False
                    else:
                        plt.plot(x/2, density, color(T)+lines[i], label='T=%g' % T)
                    the_first_method = method
                    first_method = False
                elif first_temperature[i]:
                    plt.plot(x/2, density, color(T)+lines[i],
                             label='T=%g %s (converged to %.2g)' % (T, method[1:], convergedT))
                    first_temperature[i] = False
                else: