def plot_sw(ff, temps): figure() for temp in temps: fname = 'data/radial-sw-%.2f-%.2f-%.2f.dat' % (temp, 1.3, ff/100.0) data = loadtxt(fname) r = data[:,0] filling_fraction = data[:,1] plot(r, filling_fraction/(ff/100.0), color(temp)+'-', label = 'T = %.2f' %(temp)) N = 500 ww = 1.3 g, r = readandcompute.g_r('data/mc/ww%.2f-ff%.2f-N%d' % (ww,ff/100.0,N), temp) plt.plot(r/2, g, color(temp)+':') title('Radial distribution function ff = %g' % (ff/100)) xlabel(r'$r$') ylabel('$g(r)$') legend() xlim(-0.2, 4) #ylim(0, 4) outputname = 'figs/radial-sw-%02d.pdf' % (ff) savefig(outputname, bbox_inches=0) print('figs/radial-sw-%02d.pdf' % (ff))
def plot_sw(ff, temps): figure() for temp in temps: fname = 'data/radial-sw-%.2f-%.2f-%.2f.dat' % (temp, 1.3, ff/100.0) data = loadtxt(fname) r = data[:,0] filling_fraction = data[:,1] plot(r, filling_fraction/(ff/100.0), color(temp)+'-', label = 'T = %.2f' %(temp)) N = 500 ww = 1.3 g, r = readandcompute.g_r('data/mc/ww%.2f-ff%.2f-N%d' % (ww,ff/100.0,N), temp) plt.plot(r/2, g, color(temp)+':') title('Radial distribution function ff = %g' % (ff/100)) xlabel(r'$r$') ylabel('$g(r)$') legend() xlim(-0.2, 4)
matplotlib.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) matplotlib.rc('text', usetex=True) import readandcompute ww = float(sys.argv[1]) #arg ww = [1.3] ff = float(sys.argv[2]) #arg ff = [0.3] Ns = eval(sys.argv[3]) #arg Ns = [[500, 1372, 400]] T = float(sys.argv[4]) #arg T = [1.0] plt.figure() for N in Ns: g, r = readandcompute.g_r('data/mc/ww%.2f-ff%.2f-N%d' % (ww,ff,N), T) plt.plot(r/2, g, '-', label='$N=%d$' % N) plt.legend(loc='best') plt.xlabel(r'$r/\sigma$') plt.ylabel(r'$g(r)$') plt.title(r'$g(r)$ with $\lambda = %g$, $\eta=%g$, and $T/\epsilon = %g$' % (ww, ff, T)) plt.savefig('figs/radial-distribution-ww%.2f-ff%.2f-T%.2g.pdf' % (ww,ff,T)) plt.show()