def validate_unofficial(args, data_loader, model, global_stats, mode): """Run one full unofficial validation. Unofficial = doesn't use SQuAD script. """ eval_time = utils.Timer() start_acc = utils.AverageMeter() end_acc = utils.AverageMeter() exact_match = utils.AverageMeter() loss = utils.AverageMeter() # Make predictions examples = 0 for ex in data_loader: batch_size = ex[0].size(0) (pred_s, pred_e, _), batch_loss = model.predict(ex) target_s, target_e = ex[-3:-1] # We get metrics for independent start/end and joint start/end accuracies = eval_accuracies(pred_s, target_s, pred_e, target_e) start_acc.update(accuracies[0], batch_size) end_acc.update(accuracies[1], batch_size) exact_match.update(accuracies[2], batch_size) loss.update(batch_loss, batch_size) # If getting train accuracies, sample max 10k examples += batch_size if mode == 'train' and examples >= 1e4: break logger.info('%s valid unofficial: Epoch = %d | start = %.2f | ' % (mode, global_stats['epoch'], start_acc.avg) + 'end = %.2f | exact = %.2f | examples = %d | ' % (end_acc.avg, exact_match.avg, examples) + 'valid time = %.2f (s)' % eval_time.time()) return {'loss': loss.avg, 'exact_match': exact_match.avg}
def validate_official(args, data_loader, model, global_stats, offsets, texts, answers): """Run one full official validation. Uses exact spans and same exact match/F1 score computation as in the SQuAD script. Extra arguments: offsets: The character start/end indices for the tokens in each context. texts: Map of qid --> raw text of examples context (matches offsets). answers: Map of qid --> list of accepted answers. """ eval_time = utils.Timer() f1 = utils.AverageMeter() exact_match = utils.AverageMeter() # Run through examples examples = 0 for ex in data_loader: ex_id, batch_size = ex[-1], ex[0].size(0) pred_s, pred_e, _ = model.predict(ex) for i in range(batch_size): s_offset = offsets[ex_id[i]][pred_s[i][0]][0] e_offset = offsets[ex_id[i]][pred_e[i][0]][1] prediction = texts[ex_id[i]][s_offset:e_offset] # Compute metrics ground_truths = answers[ex_id[i]] exact_match.update( utils.metric_max_over_ground_truths(utils.exact_match_score, prediction, ground_truths)) f1.update( utils.metric_max_over_ground_truths(utils.f1_score, prediction, ground_truths)) examples += batch_size logger.info('dev valid official: Epoch = %d | EM = %.2f | ' % (global_stats['epoch'], exact_match.avg * 100) + 'F1 = %.2f | examples = %d | valid time = %.2f (s)' % (f1.avg * 100, examples, eval_time.time())) return {'exact_match': exact_match.avg * 100, 'f1': f1.avg * 100}
def train(args, data_loader, model, global_stats): """Run through one epoch of model training with the provided data loader.""" # Initialize meters + timers train_loss = utils.AverageMeter() epoch_time = utils.Timer() # Run one epoch for idx, ex in enumerate(data_loader): train_loss.update(*model.update(ex)) if idx % args.display_iter == 0: logger.info('train: Epoch = %d | iter = %d/%d | ' % (global_stats['epoch'], idx, len(data_loader)) + 'loss = %.2f | elapsed time = %.2f (s)' % (train_loss.avg, global_stats['timer'].time())) train_loss.reset() logger.info('train: Epoch %d done. Time for epoch = %.2f (s)' % (global_stats['epoch'], epoch_time.time())) # Checkpoint if args.checkpoint: model.checkpoint(args.model_file + '.checkpoint', global_stats['epoch'] + 1)
def main(args): # -------------------------------------------------------------------------- # DATA logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args, args.train_file, skip_no_answer=True) logger.info('Num train examples = %d' % len(train_exs)) dev_exs = utils.load_data(args, args.dev_file) logger.info('Num dev examples = %d' % len(dev_exs)) # If we are doing offician evals then we need to: # 1) Load the original text to retrieve spans from offsets. # 2) Load the (multiple) text answers for each question. if args.official_eval: dev_texts = utils.load_text(args.dev_json) dev_offsets = {ex['id']: ex['offsets'] for ex in dev_exs} dev_answers = utils.load_answers(args.dev_json) # -------------------------------------------------------------------------- # MODEL logger.info('-' * 100) start_epoch = 0 if args.checkpoint and os.path.isfile(args.model_file + '.checkpoint'): # Just resume training, no modifications. logger.info('Found a checkpoint...') checkpoint_file = args.model_file + '.checkpoint' model, start_epoch = DocReader.load_checkpoint(checkpoint_file, args) else: # Training starts fresh. But the model state is either pretrained or # newly (randomly) initialized. if args.pretrained: logger.info('Using pretrained model...') model = DocReader.load(args.pretrained, args) if args.expand_dictionary: logger.info('Expanding dictionary for new data...') # Add words in training + dev examples words = utils.load_words(args, train_exs + dev_exs) added = model.expand_dictionary(words) # Load pretrained embeddings for added words if args.embedding_file: model.load_embeddings(added, args.embedding_file) else: logger.info('Training model from scratch...') model = init_from_scratch(args, train_exs, dev_exs) # Set up partial tuning of embeddings if args.tune_partial > 0: logger.info('-' * 100) logger.info('Counting %d most frequent question words' % args.tune_partial) top_words = utils.top_question_words( args, train_exs, model.word_dict ) for word in top_words[:5]: logger.info(word) logger.info('...') for word in top_words[-6:-1]: logger.info(word) model.tune_embeddings([w[0] for w in top_words]) # Set up optimizer model.init_optimizer() # Use the GPU? if args.cuda: model.cuda() # Use multiple GPUs? if args.parallel: model.parallelize() # -------------------------------------------------------------------------- # DATA ITERATORS # Two datasets: train and dev. If we sort by length it's faster. logger.info('-' * 100) logger.info('Make data loaders') train_dataset = data.ReaderDataset(train_exs, model, single_answer=True) if args.sort_by_len: train_sampler = data.SortedBatchSampler(train_dataset.lengths(), args.batch_size, shuffle=True) else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) dev_dataset = data.ReaderDataset(dev_exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP logger.info('-' * 100) logger.info('Starting training...') stats = {'timer': utils.Timer(), 'epoch': 0, 'best_valid': 0} writer = SummaryWriter('data/runs') for epoch in range(start_epoch, args.num_epochs): stats['epoch'] = epoch # Train train(args, train_loader, model, stats) # Validate unofficial (train) result = validate_unofficial(args, train_loader, model, stats, mode='train') tr_loss = result['loss'] # Validate unofficial (dev) result = validate_unofficial(args, dev_loader, model, stats, mode='dev') dev_loss = result['loss'] dev_em, dev_f1 = 0, 0 # Validate official if args.official_eval: result = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) dev_em, dev_f1 = result['exact_match'], result['f1'] writer.add_scalars('bidaf/%s_loss' % args.exp_id, {'tr_loss': torch.Tensor(1).fill_(tr_loss), 'dev_loss': torch.Tensor(1).fill_(dev_loss)}, epoch) writer.add_scalars('bidaf/%s_metric' % args.exp_id, {'em': torch.Tensor(1).fill_(dev_em), 'f1': torch.Tensor(1).fill_(dev_f1)}, epoch) # Save best valid if result[args.valid_metric] > stats['best_valid']: logger.info('Best valid: %s = %.2f (epoch %d, %d updates)' % (args.valid_metric, result[args.valid_metric], stats['epoch'], model.updates)) model.save(args.model_file) stats['best_valid'] = result[args.valid_metric]