Example #1
0
    def _get_simba_property(self,ptype,prop):
        from readgadget import readsnap
        snapfile = ('%s/%s'%(self.ds.fullpath,self.ds.basename))
        # set up units coming out of pygr
        prop_unit = {'mass':'Msun', 'pos':'kpccm', 'vel':'km/s', 'pot':'Msun * kpccm**2 / s**2', 'rho':'g / cm**3', 'sfr':'Msun / yr', 'u':'K', 'Dust_Masses':'Msun', 'bhmass':'Msun', 'bhmdot':'Msun / yr', 'hsml':'kpccm'}

        # damn you little h!
        if prop == 'mass' or prop == 'pos':
            hfact = 1./self.ds.hubble_constant
        elif prop == 'rho':
            hfact = self.ds.hubble_constant**2
        else:
            hfact = 1.

        # deal with differences in pygr vs. yt/caesar naming
        if ptype == 'bh': ptype = 'bndry'
        if prop == 'temperature': prop = 'u'
        if prop == 'haloid' or prop == 'dustmass' or prop == 'aform' or prop == 'bhmass' or prop == 'bhmdot': prop = self.get_property_name(ptype, prop)

        # read in the data
        data = readsnap(snapfile, prop, ptype, units=1, suppress=1) * hfact

        # set to doubles
        if prop == 'HaloID' or prop == 'particle_index':  # this fixes a bug in our Gizmo, that HaloID is output as a float!
            data = data.astype(np.int64)
        else:
            data = data.astype(np.float32)

        if prop in prop_unit.keys():
            data = self.ds.arr(data, prop_unit[prop])
        else:
            data = self.ds.arr(data, '')
        return data
Example #2
0
def collect_group_IDs(obj, data_type, part_type, snap_dir):
    """Collates list of particle and associated group IDs for all specified objects.
    Returns particle and group ID lists, and a hash list of indexes for particle IDs 
    corresponding to the starting index of each group.

    Parameters
    ----------
    obj : :class:`main.CAESAR`
        Caesar object for which to collect group IDs
    data_type : str
        'halo', 'galaxy', or 'cloud'
    part_type : str
        Particle type
    snap_dir : str
        Path where snapshot files are located; if None, uses obj.simulation.fullpath

    """
    # read in particle IDs
    from readgadget import readsnap
    if snap_dir is None:
        #snapfile = obj.simulation.fullpath.decode('utf-8')+'/'+obj.simulation.basename.decode('utf-8')
        snapfile = obj.simulation.fullpath.decode(
            'utf-8') + '/' + obj.simulation.basename.decode('utf-8')
    else:
        snapfile = snap_dir + '/' + obj.simulation.basename.decode('utf-8')
    all_pids = np.array(readsnap(snapfile, 'pid', part_type, suppress=1),
                        dtype=np.uint64)

    from caesar.fubar_halo import plist_dict
    if data_type == 'halo':
        part_list = 'obj.halos[i].%s' % plist_dict[part_type]
        ngroups = len(obj.halos)
    elif data_type == 'galaxy':
        part_list = 'obj.galaxies[i].%s' % plist_dict[part_type]
        ngroups = len(obj.galaxies)
    elif data_type == 'cloud':
        part_list = 'obj.clouds[i].%s' % plist_dict[part_type]
        ngroups = len(obj.clouds)

    # count number of total particles in groups
    npart = 0
    for i in range(ngroups):
        mylist = eval(part_list)
        npart += len(mylist)

    # fill particle and group ID lists
    pids = np.zeros(npart, dtype=np.int64)
    gids = np.zeros(npart, dtype=np.int32)
    pid_hash = np.zeros(ngroups, dtype=np.int64)
    count = 0
    for i in range(ngroups):
        mylist = eval(part_list)
        pids[count:count + len(mylist)] = all_pids[mylist]
        gids[count:count + len(mylist)] = np.full(len(mylist), i)
        pid_hash[i] = count
        count += len(mylist)
    pid_hash = np.append(pid_hash, npart + 1)

    return ngroups, pids, gids, pid_hash
Example #3
0
def info(obj, snapFile, top=None, savetxt=False):
    """
    Customized version to print more info on the CAESAR extracted galaxies.

    Parameters
    ----------
    obj : :class:`main.CAESAR`
        Main CAESAR object.
    top : int
        Number of objects to print.

    """

    from readgadget import readsnap
    from yt2caesar import group_part_by_galaxy, get_partmasses_from_snapshot

    group_list = obj.galaxies[:]
    nobjs = len(group_list)

    if top is None:
        top = nobjs

    elif top > nobjs:
        top = nobjs

    if obj.simulation.cosmological_simulation:
        time = 'z=%0.3f' % obj.simulation.redshift
    else:
        time = 't=%0.3f' % obj.simulation.time

    output  = '##\n'
    output += '## Largest %d Galaxies \n' % (top)
    if hasattr(obj, 'data_file'): output += '## from: %s\n' % obj.data_file
    output += '## %d @ %s' % (nobjs, time)
    output += '##\n'
    output += '##\n'

    cnt = 1

    # get molecular gas fraction of each particle from snapshot file
    gfH2_p = readsnap(snapFile,'fH2','gas', units=1)
    gas_p_m = get_partmasses_from_snapshot(snapFile, obj, ptype='gas')


    output += '## ID      Mstar     Mgas      MBH    fedd    SFR [Msun/yr]      SFRSD [Msun/yr/kpc^2]    SFRSD_r_stellar_half_mass [Msun/yr/kpc^2]    gasSD [Msun/pc^2]    r_baryon   r_gas      r_gas_half_mass      r_stellar    r_stellar_half_mass    Z_sfrWeighted [/Zsun]    Z_massWeighted [/Zsun]     Z_stellar [/Zsun]     T_gas_massWeighted    T_gas_SFRWeighted   fgas    f_h2_fromSnap   DGR   nrho      Central\t|  Mhalo_parent     HID\n'
    output += '## ----------------------------------------------------------------------------------------\n'

    h = obj.simulation.hubble_constant
    bhmdot = readsnap(snapFile, 'BH_Mdot','bndry',suppress=1)*1.e10/h/3.08568e+16*3.155e7 # in Mo/yr

    # debug mbh:
    # mmm = [g.masses['bh'] for g in obj.galaxies]
    # mmm[:10]

    for ii, o in enumerate(group_list):
        phm, phid = -1, -1

        if o.halo is not None:
            phm, phid = o.halo.masses['total'], o.halo.GroupID

        try:
            bhmdots = [bhmdot[k] for k in o.bhlist]
            bm = o.masses['bh']
            imax = np.argmax(bm)
            try:
                bm = bm[imax]
                bmdot = bhmdots[imax]        # only the massive BH particle matters.
            except:
                bm = bm
                bmdot = bhmdots
            frad = 0.1
            mdot_edd = 4*np.pi*6.67e-8*1.673e-24/(frad*3.e10*6.65245e-25) * bm * 3.155e7 # in Mo/yr
            fedd = bmdot / mdot_edd
            fedd = fedd[0].value
        except:
            bm = 0
            fedd = 0

        # print bm, fedd
        # import pdb; pdb.set_trace()

        # Calculate mass-weighted f_h2 of each gal
        gas_f_H2 = group_part_by_galaxy(gfH2_p, o, ptype='gas')
        gas_m = group_part_by_galaxy(gas_p_m, o, ptype='gas')

        output += ' %04d  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e  %0.2e   %0.3f   %0.3f  %0.3f  %0.2e  %0.2e  %0.3f  %0.2e  %.2e  %.2e  %s\t|  %0.2e  %d \n' % \
                  (o.GroupID, o.masses['stellar'], o.masses['gas'],
                   bm,
                   fedd,
                   o.sfr,
                   o.sfr/np.pi/o.radii['gas'].in_units('kpc')**2,
                   o.sfr/np.pi/o.radii['stellar_half_mass'].in_units('kpc')**2,
                   o.masses['gas']/np.pi/(o.radii['gas'].in_units('kpc')*1.e3)**2,
                   o.radii['baryon'].in_units('kpc'),
                   o.radii['gas'].in_units('kpc'),
                   o.radii['gas_half_mass'].in_units('kpc'),
                   o.radii['stellar'].in_units('kpc'),
                   o.radii['stellar_half_mass'].in_units('kpc'),
                   o.metallicities['sfr_weighted']/0.0134,
                   o.metallicities['mass_weighted']/0.0134,
                   o.metallicities['stellar']/0.0134,
                   o.temperatures['mass_weighted'],
                   o.temperatures['sfr_weighted'],
                   o.gas_fraction,      # = Mgas / (Mg + Ms)
                   np.sum(gas_f_H2 * gas_m)/np.sum(gas_m),    # mass-weighted f_h2
                   o.masses['gas']/o.masses['dust'],
                   o.local_number_density, o.central,
                   phm, phid)

        cnt += 1
        if cnt > top: break

    # print(output)

    if savetxt:
        outputFileName = aux_filename(snapFile, top)
        f = open(outputFileName, 'w')
        f.write(output)
        f.close()

    return output, outputFileName
Example #4
0
gal_sm = np.array([i.masses['stellar'].in_units('Msun') for i in sim.galaxies])
gal_sfr = np.array([i.sfr.in_units('Msun/yr') for i in sim.galaxies])
gal_ssfr = gal_sfr / gal_sm
gal_sm = np.log10(gal_sm)
gal_ssfr = np.log10(gal_ssfr)

with h5py.File(halflight_file, 'r') as f:
    gal_rad = f['abs_' + model + '_' + wind + '_' +
                snap][:]  # these are in pkpc
gal_rad = np.sum(gal_rad, axis=0) / 3.

gal_ids = np.array([True for i in range(len(sim.galaxies))])
gal_ids = np.arange(len(gal_ids))[gal_ids]

# load in star particle data with readsnap
star_pos = readsnap(snapfile, 'pos', 'star', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc
star_mass = readsnap(snapfile, 'mass', 'star', suppress=1,
                     units=1) / h  # in Mo
star_vels = readsnap(snapfile, 'vel', 'star', suppress=1, units=0)  # in km/s
star_tform = readsnap(snapfile, 'age', 'star', suppress=1,
                      units=1)  # expansion times at time of formation

gas_pos = readsnap(snapfile, 'pos', 'gas', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc
gas_mass = readsnap(snapfile, 'mass', 'gas', suppress=1, units=1) / h  # in Mo
gas_sfr = readsnap(snapfile, 'sfr', 'gas', suppress=1, units=1)  # in Mo/yr
gas_h1 = readsnap(snapfile,
                  'NeutralHydrogenAbundance',
                  'gas',
                  suppress=1,
Example #5
0
xmin = -20.   # [kpc]
xmax = 20.    # [kpc]
Npixels = 100 #512
DR = 1. # kpc 
z = obj.simulation.redshift

masses = np.array([i.masses['stellar'] for i in obj.galaxies])
sfr = np.array([i.sfr for i in obj.galaxies])

mask_mass = (masses > 4e10) & (masses < 6e10)
mask_sfr = (sfr > 0.5) & (sfr < 2.5)

#mw_gal_no = np.arange(0, len(masses))[mask_mass*mask_sfr]
mw_gal_no = np.arange(0, len(masses))[mask_mass]

star_positions = readsnap(snap, 'pos', 'star', suppress=1, units=1) / (1.+z)
star_vels = readsnap(snap, 'vel', 'star', suppress=1, units=0)
star_mass = readsnap(snap, 'mass', 'star', suppress=1, units=1) / (h*10**7.)

names = ['edge_on', 'face_on']
vecs = [np.array([0,1,0]), np.array([0,0,1])]

faceon = np.zeros((len(obj.galaxies), 5))
edgeon = np.zeros((len(obj.galaxies), 5))
b_t = np.zeros(len(obj.galaxies))

for i in mw_gal_no:
        print 'galaxy: ' + str(i)
        slist = obj.galaxies[i].slist
        gal_mass = obj.galaxies[i].masses['stellar'].in_units('Msun')
        gal_pos = obj.galaxies[i].pos.in_units('kpc/h')
Example #6
0
def simba_to_pd(galnames,
                raw_sim_dir,
                raw_sim_name_prefix,
                caesar_dir,
                name_prefix,
                redshiftFile,
                d_data,
                startGAL=None,
                endGAL=None,
                debugplotgas=False,
                R_max=20.0,
                verbose=False,
                debug=False):
    """

    Write out useful fields gas, stars, DM particles of the selected galaxies into DataFrames

    Parameters
    ----------
    galnames: str or list of string
        if it's a simple str, it's a file that stores the output from return from select_SFgal_from_simba()
        if it's a list of str, it's output from select_SFgal_from_simba()
    raw_sim_dir: string
        where to look for raw snapshot files
    raw_sim_name_prefix: string
        prefix to the speciifc volume and resolution of snapshots we are looking
    caesar_dir: str
        path to the caesar output files
    name_prefix: str
        predix to file of caesar outputs
    redshiftFile: str
        where to look for the redshift info for this particular set of snapshots
    d_data: str
        directory location to save dataframe files
    startGAL: None or int
        snapshot number to begin extraction. Use to pseudo-parallelized things
        startGAL <= GAL < endGAL
    endGAL: None or int
        snapshot number to end extraction. Use to pseudo-parallelized things
    plotgas: bool
        whether or not to plot gas distribution of galaxy. Uesful for e.g., looking at the galaxy position and see if it might be the COM of two overlapping galaxies - see Romeel's email on Apr 4th, 2019.
    R_max: float
        physical kpc for projection plot
    Returns
    -------
    galnames_selected: list of string
        galaxies names indicating the halo ID, snapshot number, and galaxy ID (numbered based on some predefined criterion)
    zreds_selected: numpy array of float
        redshifts of galaxies


    """

    try:
        import cPickle as pickle
    except:
        import _pickle as pickle
    import caesar
    import yt
    import numpy as np
    import pandas as pd
    import os
    from readgadget import readsnap

    kpc2m = 3.085677580666e19
    resort = False

    # Save the names and redshift for the galaxies that we finally decide to save in DataFrames:
    galnames_selected = []
    zreds_selected = np.array([])

    if type(galnames) is str:
        try:
            with open(galnames, 'r') as f:
                galnames = pickle.load(f)
        except:
            pass

    try:
        print(galnames['halo'].values, galnames['snap'].values,
              galnames['GAL'].values, galnames['SFR'].values)
    except TypeError:
        galnames = galnames[0]

    if (sorted(galnames['snap'].values) == galnames['snap'].values
        ).all() == False:
        # then we have to sort galnames by 'snap'
        galnames = galnames.sort_values(
            ['snap', 'SFR'], ascending=[False, False]).reset_index(
                drop=False)  # drop: avoid old index being added as a column
        resort = True

    snap_hold = []
    for num, (halo, snap, GAL, sfr) in enumerate(
            zip(galnames['halo'].values, galnames['snap'].values,
                galnames['GAL'].values, galnames['SFR'].values)):

        if num == 0:
            snap_hold = snap
            s, h, obj, ds, zred = define_ds(snap, raw_sim_dir,
                                            raw_sim_name_prefix, caesar_dir,
                                            name_prefix, redshiftFile)

            # get H2 fraction from snapfile, instead of from YT sphere - faster way to weed out galaxies that are too small/with too few dense gas particles.
            snapFile = raw_sim_dir + raw_sim_name_prefix + '{:0>3}'.format(
                int(snap)) + '.hdf5'
            gfH2 = readsnap(snapFile, 'fH2', 'gas')
            gas_p_m = get_partmasses_from_snapshot(snapFile, obj, ptype='gas')

        else:
            if snap != snap_hold:
                s, h, obj, ds, zred = define_ds(snap, raw_sim_dir,
                                                raw_sim_name_prefix,
                                                caesar_dir, name_prefix,
                                                redshiftFile)
                snap_hold = snap

        # if we have sorted galnames by ('snap', SFR of each snap), we have to do so for obj too.
        if resort:
            gal = obj.galaxies
            obj.galaxies = [gal[i] for i in galnames.index.values]

        # if we want to split up exection of this script into multiple nodes.
        if startGAL is None:
            startGAL = 0
        else:
            startGAL = int(startGAL)

        if endGAL is None:
            endGAL = len(galnames.index)
        else:
            endGAL = int(endGAL)

        assert startGAL < len(galnames.index)
        assert endGAL <= len(galnames.index)
        assert startGAL < endGAL

        if startGAL <= GAL < endGAL:
            print(
                '\nNow looking at galaxy # %s with parent halo ID %s in snapshot %s at z = %s'
                % (int(GAL), int(halo), int(snap), zred))

            print('Creating galaxy name:')
            galname = 'h' + str(int(halo)) + '_s' + \
                str(int(snap)) + '_G' + str(int(GAL))
            print(galname)

            galaxy = obj.galaxies[GAL]

            # Exclude galaxies based on global properties to speed things up. TO BE IMPLEMENTED
            if galaxy.sfr < 0.1:
                print("SFR too low.. Skipping")
                continue

            galaxy_fH2 = np.array([gfh2[k] for k in obj.galaxies.glist])
            assert len(galaxy_fH2) == len(galaxy.masses['gas'])
            if (galaxy.masses['gas'] * galaxy_fH2).sum() <= 1.e5:
                print("Dense gas mass less than 10^5 Msun.. Skipping")
                continue

            if len(galaxy.slist) < 64 or len(galaxy.glist) < 64:
                print(
                    "Too few star particles or gas particles, unlikely to be real galaxy or useful for our purpose"
                )
                continue

            if galaxy.masses['gas'] == 0.0 or galaxy.masses['stellar'] == 0.0:
                # then don't bother getting any info on this galaxy
                if galaxy.masses['gas'] == 0.0:
                    print("Don't bother with this galaxy, it has no gas mass.")
                elif galaxy.masses['stellar'] == 0.0:
                    print(
                        "Don't bother with this galaxy, it has no stellar mass."
                    )
                continue

            simgas_path = (d_data +
                           'particle_data/sim_data/z' + '{:.2f}').format(
                               float(zred)) + '_' + galname + '_sim.gas'
            simstar_path = (d_data +
                            'particle_data/sim_data/z' + '{:.2f}').format(
                                float(zred)) + '_' + galname + '_sim.star'
            simdm_path = (d_data +
                          'particle_data/sim_data/z' + '{:.2f}').format(
                              float(zred)) + '_' + galname + '_sim.dm'

            if not os.path.exists(simgas_path) and not os.path.exists(
                    simstar_path) and not os.path.exists(simdm_path):

                # Get location and radius for each galaxy belonging to this haloID:
                loc = galaxy.pos  # .in_units('unitary')
                R_gal = galaxy.radius  # kpccm, i.e., co-moving
                # print(galaxy.radii)
                print('Cut out a sphere with radius %s, %s' %
                      (R_gal, R_gal.in_units('kpc')))
                sphere = ds.sphere(loc, R_gal)

                gas_pos = sphere['PartType0', 'Coordinates'].in_units('kpc')
                print('%s SPH particles' % len(gas_pos))

                star_pos_all = sphere['PartType4',
                                      'Coordinates'].in_units('kpc')
                print('%s Star particles' % len(star_pos_all))

                if debug:
                    print("List all stuff inside the raw sim .hdf5")
                    rawSim = raw_sim_dir + raw_sim_name_prefix + \
                            '{:>03}'.format(int(snap)) + '.hdf5'
                    os.system('h5ls -r ' + rawSim)

                    print("")
                    print(ds.field_list)

                if len(gas_pos) > 0 and len(star_pos_all) > 0:
                    print('Extracting all gas particle properties...')
                    gas_pos = gas_pos - loc

                    # rotation to ensure that the galaxies lie in the xy-plane. That makes it easier to visualize later, and you can always add random viewing angles later as well.
                    gas_pos = caesar.utils.rotator(
                        gas_pos, galaxy.rotation_angles['ALPHA'],
                        galaxy.rotation_angles['BETA'])
                    gas_posx, gas_posy, gas_posz = gas_pos[:,
                                                           0].d, gas_pos[:,
                                                                         1].d, gas_pos[:,
                                                                                       2].d

                    gas_vel = sphere['PartType0', 'Velocities'].in_cgs() / 1.e5
                    gas_vel = caesar.utils.rotator(
                        gas_vel, galaxy.rotation_angles['ALPHA'],
                        galaxy.rotation_angles['BETA'])
                    gas_velx, gas_vely, gas_velz = gas_vel[:,
                                                           0].d, gas_vel[:,
                                                                         1].d, gas_vel[:,
                                                                                       2].d

                    print("gas_velx length: ", len(gas_velx))
                    gas_densities = sphere['PartType0', 'Density'].in_cgs()
                    gas_f_H2 = sphere['PartType0', 'FractionH2']
                    gas_f_neu = sphere['PartType0', 'NeutralHydrogenAbundance']
                    gas_m = sphere['PartType0', 'Masses'].in_units('Msun')
                    # electrons per Hydrogen atom (max: 1.15)
                    gas_x_e = sphere['PartType0', 'ElectronAbundance']

                    # ionized gas mass fraction (because we don't trust
                    # NeutralHydrogenAbundance -- which only includes atomic gas but not moleuclar)
                    # At the end, calculated from
                    gas_f_ion = gas_x_e / max(gas_x_e)
                    gas_f_HI = 1 - gas_f_ion

                    print(
                        '\nChecking molecular gas mass fraction from simulation:'
                    )
                    print('%.3s %% \n' %
                          (np.sum(gas_m * gas_f_H2) / np.sum(gas_m) * 100.))

                    # Tk
                    gas_Tk = sphere['PartType0', 'Temperature']
                    gas_h = sphere['PartType0',
                                   'SmoothingLength'].in_units('kpc')  # Tk
                    # Msun/yr
                    gas_SFR = sphere['PartType0', 'StarFormationRate']
                    # gas_SFR = galaxy.sfr
                    gas_Z = sphere['PartType0', 'Metallicity_00'].d / \
                        0.0134               # from RD
                    gas_a_He = sphere['PartType0', 'Metallicity_01'].d
                    gas_a_C = sphere['PartType0', 'Metallicity_02'].d
                    gas_a_N = sphere['PartType0', 'Metallicity_03'].d
                    gas_a_O = sphere['PartType0', 'Metallicity_04'].d
                    gas_a_Ne = sphere['PartType0', 'Metallicity_05'].d
                    gas_a_Mg = sphere['PartType0', 'Metallicity_06'].d
                    gas_a_Si = sphere['PartType0', 'Metallicity_07'].d
                    gas_a_S = sphere['PartType0', 'Metallicity_08'].d
                    gas_a_Ca = sphere['PartType0', 'Metallicity_09'].d
                    gas_a_Fe = sphere['PartType0', 'Metallicity_10'].d

                    print('Extracting all star particle properties...')
                    star_pos = star_pos_all - loc
                    star_pos = caesar.utils.rotator(
                        star_pos, galaxy.rotation_angles['ALPHA'],
                        galaxy.rotation_angles['BETA'])
                    star_posx, star_posy, star_posz = star_pos[:,
                                                               0].d, star_pos[:,
                                                                              1].d, star_pos[:,
                                                                                             2].d

                    star_vel = sphere['PartType4', 'Velocities'].in_cgs() / 1e5
                    star_vel = caesar.utils.rotator(
                        star_vel, galaxy.rotation_angles['ALPHA'],
                        galaxy.rotation_angles['BETA'])
                    star_velx, star_vely, star_velz = star_vel[:,
                                                               0].d, star_vel[:,
                                                                              1].d, star_vel[:,
                                                                                             2].d

                    star_m = sphere['PartType4', 'Masses'].in_units('Msun')
                    # star_m = galaxy.masses['stellar']
                    star_a_C = sphere['PartType4', 'Metallicity_02'].d
                    star_a_O = sphere['PartType4', 'Metallicity_04'].d
                    star_a_Si = sphere['PartType4', 'Metallicity_07'].d
                    star_a_Fe = sphere['PartType4', 'Metallicity_10'].d
                    star_Z = sphere['PartType4', 'Metallicity_00'].d / \
                        0.0134               # from RD

                    print('Info for this snapshot:')
                    omega_baryon = obj.simulation.omega_baryon
                    omega_matter = obj.simulation.omega_matter
                    hubble_constant = obj.simulation.hubble_constant
                    print('Omega baryon: %s' % omega_baryon)
                    print('Omega matter: %s' % omega_matter)
                    print('Hubble constant: %s' % hubble_constant)
                    print('XH: %s' % obj.simulation.XH)

                    current_time = ds.current_time.in_units('yr') / 1.e6  # Myr
                    # in scale factors, do as with Illustris
                    star_formation_a = sphere['PartType4',
                                              'StellarFormationTime'].d
                    star_formation_z = 1. / star_formation_a - 1
                    # Code from yt project (yt.utilities.cosmology)
                    star_formation_t = 2.0 / 3.0 / np.sqrt(
                        1 - omega_matter) * np.arcsinh(
                            np.sqrt((1 - omega_matter) / omega_matter) /
                            np.power(1 + star_formation_z, 1.5)) / (
                                hubble_constant)  # Mpc*s/(100*km)
                    star_formation_t *= kpc2m / 100. / (1e6 * 365.25 * 86400
                                                        )  # Myr
                    star_age = current_time.d - star_formation_t

                    print('Extracting all DM particle properties...')
                    dm_pos_all = sphere['PartType1',
                                        'Coordinates'].in_units('kpc')
                    dm_pos = dm_pos_all - loc
                    dm_pos = caesar.utils.rotator(
                        dm_pos, galaxy.rotation_angles['ALPHA'],
                        galaxy.rotation_angles['BETA'])
                    dm_posx, dm_posy, dm_posz = dm_pos[:,
                                                       0].d, dm_pos[:,
                                                                    1].d, dm_pos[:,
                                                                                 2].d
                    dm_vel = sphere['PartType1', 'Velocities'].in_cgs() / 1e5
                    dm_vel = caesar.utils.rotator(
                        dm_vel, galaxy.rotation_angles['ALPHA'],
                        galaxy.rotation_angles['BETA'])
                    dm_velx, dm_vely, dm_velz = dm_vel[:,
                                                       0].d, dm_vel[:,
                                                                    1].d, dm_vel[:,
                                                                                 2].d
                    dm_m = sphere['PartType1', 'Masses'].in_units('Msun')

                    print('Extracting all BH particle properties...')
                    BH_pos = sphere['PartType5',
                                    'Coordinates'].in_units('kpc') - loc
                    print('%s BH particles' % len(BH_pos))

                    if len(BH_pos) > 0:
                        BH_pos = caesar.utils.rotator(
                            BH_pos, galaxy.rotation_angles['ALPHA'],
                            galaxy.rotation_angles['BETA'])
                        BH_posx, BH_posy, BH_posz = BH_pos[:,
                                                           0].d, BH_pos[:,
                                                                        1].d, BH_pos[:,
                                                                                     2].d

                        # BH mass
                        # which grows through accretion and mergers w/ other BHs
                        BH_m = sphere['PartType5', 'BH_Mass'].in_units('Msun')

                        # dynamical mass, which enters into gravity calculation
                        BH_m2 = sphere['PartType5', 'Masses'].in_units('Msun')

                        BH_mdot = sphere['PartType5', 'BH_Mdot']

                        # the one that actually matters is the most massive BH particle
                        idx = np.where(BH_m == BH_m.max())
                        BH_m = BH_m[idx]
                        BH_mdot = BH_mdot[idx]

                        print(BH_m, BH_mdot)

                        simbh = pd.DataFrame({
                            'mBH_Msun': BH_m,
                            'mdot': BH_mdot
                        })

                        simbh.to_pickle(d_data + 'particle_data/sim_data/z' +
                                        '{:.2f}'.format(float(zred)) + '_' +
                                        galname + '_sim.bh')

                    # Put into dataframes:
                    simgas = pd.DataFrame({
                        'x': gas_posx,
                        'y': gas_posy,
                        'z': gas_posz,
                        'vx': gas_velx,
                        'vy': gas_vely,
                        'vz': gas_velz,
                        'SFR': gas_SFR,
                        'Z': gas_Z,
                        'nH': gas_densities,
                        'Tk': gas_Tk,
                        'h': gas_h,
                        'f_HI1': gas_f_HI,  # atomic and molecular H
                        'f_neu': gas_f_neu,  # atomic H
                        'f_H21': gas_f_H2,
                        'm': gas_m,
                        'a_He': gas_a_He,
                        'a_C': gas_a_C,
                        'a_N': gas_a_N,
                        'a_O': gas_a_O,
                        'a_Ne': gas_a_Ne,
                        'a_Mg': gas_a_Mg,
                        'a_Si': gas_a_Si,
                        'a_S': gas_a_S,
                        'a_Ca': gas_a_Ca,
                        'a_Fe': gas_a_Fe
                    })
                    simstar = pd.DataFrame({
                        'x': star_posx,
                        'y': star_posy,
                        'z': star_posz,
                        'vx': star_velx,
                        'vy': star_vely,
                        'vz': star_velz,
                        'Z': star_Z,
                        'm': star_m,
                        'age': star_age
                    })

                    simdm = pd.DataFrame({
                        'x': dm_posx,
                        'y': dm_posy,
                        'z': dm_posz,
                        'vx': dm_velx,
                        'vy': dm_vely,
                        'vz': dm_velz,
                        'm': dm_m
                    })

                    # Calculate approximate 100 Myr average of SFR for this galaxy
                    m_star = simstar['m'].values
                    age_star = simstar['age'].values
                    SFR_avg = sum(m_star[age_star < 100]) / 100.e6
                    print(
                        'Estimated SFR for this galaxy averaged over past 100 Myr: '
                        + str(SFR_avg))
                    print('SFR in simulation: %s' % galaxy.sfr)
                    print('SFR for parent halo: %s' % galaxy.halo.sfr)

                    print('Stellar mass: %s Msun' % np.sum(m_star))
                    print('Dark matter mass: %s ' % np.sum(dm_m))

                    print('Saving galaxy data as DataFrames in {}').format(
                        d_data)
                    # replace w/ this line if we decide to merge this func to load_module.py and call via parameters_zx.txt
                    # print('Saving galaxy data as DataFrames in {}, as defined in __init__.py').format(d_data)

                    savepath = d_data + 'particle_data/sim_data/'
                    if not os.path.exists(savepath):
                        os.makedirs(savepath)

                    simgas.to_pickle(simgas_path)
                    simstar.to_pickle(simstar_path)
                    simdm.to_pickle(simdm_path)

                    if plotgas:
                        import matplotlib.pyplot as plt
                        from mpl_toolkits.axes_grid1 import AxesGrid
                        # projection plot
                        plt.close('all')

                        savepath = 'plots/sims/'
                        if not os.path.exists(savepath):
                            os.makedirs(savepath)
                        ppp = yt.ProjectionPlot(
                            ds,
                            0,
                            [('gas', 'density')],
                            center=sphere.center.value,
                            width=(R_max, 'kpc'),
                            # center='c',
                            weight_field='density')
                        try:
                            ppp.annotate_timestamp(corner='upper_left',
                                                   redshift=True,
                                                   time=False,
                                                   draw_inset_box=True)
                            #p.annotate_scale(corner='upper_right')
                            ppp.annotate_particles((R_max, 'kpc'),
                                                   p_size=20,
                                                   ptype='PartType5',
                                                   minimum_mass=1.e7)
                        except:
                            pass

                        filename = 'z' + '{:.2f}'.format(
                            float(zred)) + '_' + galname + '_gas.pdf'
                        p.save(os.path.join(savepath, filename))

                elif len(gas_pos) == 0 or len(star_pos_all) == 0:

                    if len(star_pos_all) == 0:
                        print(
                            "Not saving this galaxy {:} because it has no stellar mass..."
                        ).format(galname)
                    elif len(gas_pos) == 0:
                        print(
                            "Not saving this galaxy {:} because it has no gas mass..."
                        ).format(galname)

                    if debug:
                        import matplotlib.pyplot as plt
                        from mpl_toolkits.axes_grid1 import AxesGrid
                        # projection plot
                        plt.close('all')

                        savepath = 'plots/sims/'
                        if not os.path.exists(savepath):
                            os.makedirs(savepath)

                        filename = 'z' + '{:.2f}'.format(
                            float(zred)) + '_' + galname + '_gas.pdf'

                        if not os.path.isfile(filename):
                            print("Plotting gas particles...")
                            ppp = yt.ProjectionPlot(
                                ds,
                                0,
                                [('gas', 'density')],
                                center=sphere.center.value,
                                width=(R_max, 'kpc'),
                                # center='c',
                                weight_field='density')
                            try:
                                ppp.annotate_timestamp(corner='upper_left',
                                                       redshift=True,
                                                       time=False,
                                                       draw_inset_box=True)
                                #p.annotate_scale(corner='upper_right')
                                ppp.annotate_particles((R_max, 'kpc'),
                                                       p_size=20,
                                                       ptype='PartType5',
                                                       minimum_mass=1.e7)
                            except:
                                pass

                            ppp.save(os.path.join(savepath, filename))

                    continue
            else:
                print("Skipping... Already extracted...")

            galnames_selected.append(galname)
            zreds_selected = np.append(zreds_selected, float(zred))

    return galnames_selected, zreds_selected
gal_sfr = np.array([i.sfr.in_units('Msun/yr') for i in sim.galaxies])
gal_ssfr = gal_sfr / gal_sm

with h5py.File(halflight_file, 'r') as f:
    gal_rad = f[model + '_' + wind + '_' + snap +
                '_halflight'][:]  # these are in pkpc
gal_rad = np.sum(gal_rad, axis=0) / 3.
#gal_rad = np.array([i.radii['stellar_half_mass'].in_units('kpc') for i in sim.galaxies])

gal_sm = np.log10(gal_sm[gal_ids * gal_cent])
gal_ssfr = np.log10(gal_ssfr[gal_ids * gal_cent])
gal_rad = gal_rad[gal_ids * gal_cent]
gal_ids = np.arange(len(gal_ids))[gal_ids * gal_cent]

# load in star particle data with readsnap
star_pos = readsnap(snapfile, 'pos', 'star', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc
star_mass = readsnap(snapfile, 'mass', 'star', suppress=1,
                     units=1) / h  # in Mo

gas_pos = readsnap(snapfile, 'pos', 'gas', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc
gas_mass = readsnap(snapfile, 'mass', 'gas', suppress=1, units=1) / h  # in Mo
gas_temp = readsnap(snapfile, 'u', 'gas', suppress=1, units=1)

bh_pos = readsnap(snapfile, 'pos', 'bndry', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc

no_gals = np.zeros(len(bin_labels))

for j, m in enumerate(masks):
Example #8
0
 sim = caesar.load(infile,LoadHalo=False)
 redshift = np.round(sim.simulation.redshift,3)
 h = sim.simulation.hubble_constant
 
 mygals = sim.galaxies
 print('Doing z=',redshift,'snapshot',snapfile,'with',len(mygals),'galaxies.')
 
 # read in galaxy info
 ids = np.asarray([i.GroupID for i in mygals])
 central = np.asarray([i.central for i in mygals])
 ms = np.asarray([i.masses['stellar'] for i in mygals])
 mbh = np.asarray([i.masses['bh'] for i in mygals])
 sfr = np.asarray([i.sfr for i in mygals])
 
 # read in particle info
 sm = readsnap(snapfile,'mass','star',units=1,suppress=1)/h  # Mo
 sp = readsnap(snapfile,'pos','star',units=1,suppress=1)/(1+redshift)/h # pkpc
 gm = readsnap(snapfile,'mass','gas',units=1,suppress=1)/h # Mo
 gp = readsnap(snapfile,'pos','gas',units=1,suppress=1)/(1+redshift)/h # pkpc
 gsfr = readsnap(snapfile,'sfr','gas',units=1,suppress=1) # Mo/yr
 
 # compute rhalf
 rhalf = np.zeros([3,len(mygals)])
 if (MODEL == 'm100n1024') & (SNAP in ['105', '151']):
     params, mags = get_mags_band(loserfile, mtype, band, only_mtype=True, verbose=True)
     where = int(np.where(params['bands'] == band)[0])
     mags = mags.transpose()[where]
 else:
     params, mags = get_mags_band(loserfile, mtype, band, verbose=True)
 allL = absmag_to_lum(mags)
 
Example #9
0
gal_sm = np.array(
    [i.masses['stellar'].in_units('Msun') for i in sim.central_galaxies])
gal_sfr = np.array([i.sfr.in_units('Msun/yr') for i in sim.central_galaxies])
gal_ssfr = np.log10(gal_sfr / gal_sm)
gal_rad = np.array([
    i.radii['stellar_half_mass'].in_units('kpc') for i in sim.central_galaxies
])
richness = np.log10(gal_h1m / gal_sm)

mass_mask = np.log10(gal_sm) > 9.
n_mask = np.array([(len(i.glist) > n_min) for i in sim.central_galaxies])
mask = mass_mask * n_mask * (gal_h1m > 0.)
mask = mass_mask * (gal_h1m > 0.)
gal_ids = np.arange(len(sim.central_galaxies))[mask]

gas_pos = readsnap(snapfile, 'pos', 'gas', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc
gas_mass = readsnap(snapfile, 'mass', 'gas', suppress=1, units=1) / h  # in Mo
gas_h1 = readsnap(snapfile,
                  'NeutralHydrogenAbundance',
                  'gas',
                  suppress=1,
                  units=1)

bh_pos = readsnap(snapfile, 'pos', 'bndry', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc

h1_radii = np.zeros(len(gal_ids))

for i in range(len(gal_ids)):
    print('\n')
Example #10
0
gal_ssfr = gal_sfr / gal_sm

# load in half light radii:
with h5py.File(halflight_file, 'r') as f:
    gal_rad = f[model + '_' + wind + '_' + snap +
                '_halflight'][:]  # these are in pkpc
gal_rad = np.sum(gal_rad, axis=0) / 3.

# select central galaxies:
gal_sm = np.log10(gal_sm[gal_ids * gal_cent])
gal_ssfr = np.log10(gal_ssfr[gal_ids * gal_cent])
gal_rad = gal_rad[gal_ids * gal_cent]
gal_ids = np.arange(len(gal_ids))[gal_ids * gal_cent]

# load in star particle data with readsnap
star_pos = readsnap(snapfile, 'pos', 'star', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc
star_tform = readsnap(snapfile, 'age', 'star', suppress=1,
                      units=1)  # expansion times at time of formation
star_mass = readsnap(snapfile, 'mass', 'star', suppress=1,
                     units=1) / h  # in Mo
bh_pos = readsnap(snapfile, 'pos', 'bndry', suppress=1, units=1) / (
    h * (1. + redshift))  # in kpc

no_gals = np.zeros(len(bin_labels))

for j, m in enumerate(masks):

    # for each mass bin make a mass mask and select those galaxies:

    print '\n'