Example #1
0
def write_pajek_hvcRA_coord(dirname, trial_number):
    """
    Create .net file with locations of HVC-RA neurons in array.
    Mature neurons are highlighted
    """
    file_RA_xy = os.path.join(dirname, "RA_xy_" + str(trial_number) + ".bin")

    file_training = os.path.join(dirname, "training_neurons.bin")
    file_pajek = os.path.join(dirname, "network_" + str(trial_number) + ".net")
    fileMature = os.path.join(dirname, "mature_" + str(trial_number) + ".bin")

    coord_RA = reading.read_coordinates(file_RA_xy)
    training_neurons = reading.read_training_neurons(file_training)
    (_, _, mature_indicators) = reading.read_mature_indicators(fileMature)

    mature_neurons = np.where(mature_indicators == 1)[0]
    num_neurons = coord_RA.shape[0]
    # sort array with neurons and training neurons #
    training_neurons.sort()
    mature_neurons.sort()

    with open(file_pajek, 'w') as f:
        f.write("*Vertices {0}\n".format(num_neurons))

        for i in range(num_neurons):
            if i in training_neurons:
                f.write('{0} "{1}" {2} {3} {4} ic Green\n'.format(
                    i + 1, i, coord_RA[i][0], coord_RA[i][1], coord_RA[i][2]))
            elif i in mature_neurons:
                f.write('{0} "{1}" {2} {3} {4} ic Black\n'.format(
                    i + 1, i, coord_RA[i][0], coord_RA[i][1], coord_RA[i][2]))
            else:
                f.write('{0} "{1}" {2} {3} {4} ic Yellow\n'.format(
                    i + 1, i, coord_RA[i][0], coord_RA[i][1], coord_RA[i][2]))
Example #2
0
def estimate_oscillations(filenameTrial, filenameMature):
    """
    Estimate oscillation prominence for mature neurons in trial
    """

    (_, _, mature_indicators) = reading.read_mature_indicators(filenameMature)

    mature_neurons = np.where(mature_indicators == 1)[0]

    # plot somatic spikes and burst density for a single trial
    mature_neurons_set = set(mature_neurons)
    spike_times_s, neuron_id_s, ordered_spikes_s, neuron_ordered_id_s = utils.getSpikes(
        os.path.join(testDir, filenameTrial))

    ordered_spikes_s_mature = []
    neuron_ordered_id_s_mature = []

    for spikes, neuron_id in zip(spike_times_s, neuron_id_s):
        if neuron_id[0] in mature_neurons_set:
            ordered_spikes_s_mature.append(spikes)
            neuron_ordered_id_s_mature.append(neuron_id)

    ordered_spikes_s_mature = sorted(ordered_spikes_s_mature)

    smallest_spike_time = ordered_spikes_s_mature[0][0]
    for spikes in ordered_spikes_s_mature:
        for i in range(len(spikes)):
            spikes[i] -= smallest_spike_time

    first_spikes_s = [s[0] for s in ordered_spikes_s_mature]

    time, burst_density = utils.calculate_burst_density_hist(
        first_spikes_s, BIN_WIDTH, -10.0, 600.0)

    f = plt.figure()
    plt.suptitle('Single trial')

    ax = f.add_subplot(111)
    ax.plot(time, burst_density)
    ax.set_ylabel('Burst density (1/ms)')
    ax.set_xlabel('Time (ms)')
    ax.set_xlim([0, 250])
    ax.set_ylim([0, 11])

    first_nonzero = np.where(burst_density > 0)[0][0]
    last_nonzero = np.where(burst_density > 0)[0][-1]

    mean_bd = np.mean(burst_density[first_nonzero:last_nonzero])
    std_bd = np.std(burst_density[first_nonzero:last_nonzero])

    print "Interval for non-zero burst density: ", time[first_nonzero], time[
        last_nonzero]
    print "Mean burst density: ", mean_bd
    print "Std burst density: ", std_bd
    print "Std / mean: ", std_bd / mean_bd

    return std_bd / mean_bd
Example #3
0
def write_pajek_neurons(dirname, trial_number):
    """
    Create .net file with locations and connections between mature HVC-RA neurons in array
    """
    file_RA_xy = os.path.join(dirname, "RA_xy_" + str(trial_number) + ".bin")

    file_training = os.path.join(dirname, "training_neurons.bin")
    file_pajek = os.path.join(dirname, "network_" + str(trial_number) + ".net")
    fileMature = os.path.join(dirname, "mature_" + str(trial_number) + ".bin")
    fileSuperSynapses = os.path.join(
        dirname, "RA_RA_super_connections_" + str(trial_number) + ".bin")
    fileWeights = os.path.join(dirname,
                               "weights_" + str(trial_number) + ".bin")

    coord_RA = reading.read_coordinates(file_RA_xy)
    training_neurons = reading.read_training_neurons(file_training)
    (N_RA, _, weights) = reading.read_weights(fileWeights)
    (_, _, mature_indicators) = reading.read_mature_indicators(fileMature)
    (_, _, super_synapses) = reading.read_synapses(fileSuperSynapses)

    mature_neurons = np.where(mature_indicators == 1)[0]
    #print list(mature_neurons)
    #mature_neurons = range(N_RA)
    num_neurons = len(mature_neurons)
    # sort array with neurons and training neurons #
    training_neurons.sort()
    mature_neurons.sort()

    with open(file_pajek, 'w') as f:
        f.write("*Vertices {0}\n".format(num_neurons))

        for i, neuron_id in enumerate(mature_neurons):
            if neuron_id in training_neurons:
                f.write('{0} "{1}" {2} {3} {4} ic Green\n'.format(
                    i + 1, neuron_id, coord_RA[neuron_id][0],
                    coord_RA[neuron_id][1], coord_RA[neuron_id][2]))
            else:
                f.write('{0} "{1}" {2} {3} {4} ic Yellow\n'.format(
                    i + 1, neuron_id, coord_RA[neuron_id][0],
                    coord_RA[neuron_id][1], coord_RA[neuron_id][2]))

        f.write("*Arcs\n".format(num_neurons))

        # write targets of HVC(RA) neurons
        for i, source_id in enumerate(mature_neurons):
            for target_id in super_synapses[source_id]:
                try:
                    ind = utils.index(mature_neurons, target_id)
                    f.write('{0} {1} {2} c Green\n'.format(
                        i + 1, ind + 1, weights[source_id][target_id]))
                except ValueError:
                    continue
Example #4
0
def get_maturation_time_sequence(dirname, end_trial, trialStep, neurons):
    """
    Outputs excitatory conductance input from source_neurons to target_neuron at different
        points during simulation
    """
    
    num_timepoints = end_trial / trialStep + 1
    
    maturation_indicators = np.zeros((len(neurons), num_timepoints), np.float32)

    current_trial = 0
    timepoint = 0

    while current_trial <= end_trial:   
        fileMature = os.path.join(dirname, "mature_" + str(current_trial) + ".bin")
        (_, _, mat_indicators) = reading.read_mature_indicators(fileMature)
        
        for i, neuron_id in enumerate(neurons):
            maturation_indicators[i][timepoint] = mat_indicators[neuron_id]
                
        timepoint += 1
        current_trial += trialStep
        
    return maturation_indicators         
Example #5
0
all_first_spikes_in_burst = [
    s - min_first_spike for s in all_first_spikes_in_burst
]

#ordered_dend_spikes = [d - min_dend_spike_time for d in ordered_dend_spikes]

time, burst_density = utils.calculate_burst_density(
    sorted(all_first_spikes_in_burst), BIN_WIDTH)

#start_time = 0.0
#end_time = 120.0

#########################################################################
# calculate continuity for the burst pattern produced by mature neurons #
#########################################################################
(_, _, mature_indicators) = reading.read_mature_indicators(
    os.path.join(dataDir, "mature_" + str(trial) + ".bin"))

print "Number of mature HVC-RA: ", len(np.where(mature_indicators == 1)[0])

min_first_spike_mature = 1e6
max_first_spike_mature = -1e6

for id in np.where(mature_indicators == 1)[0]:
    for first_spike in first_spikes_in_bursts[id]:
        if first_spike < min_first_spike_mature:
            min_first_spike_mature = first_spike
        if first_spike > max_first_spike_mature:
            max_first_spike_mature = first_spike

min_first_spike_mature -= min_first_spike
max_first_spike_mature -= min_first_spike
Example #6
0
import matplotlib.pyplot as plt
import numpy as np

TRAINING_KICK_TIME = 100.0

#filename = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/test/maturationTransition4/jitter.bin"
#fileMature = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/maturationTransition4/mature_16500.bin"

filename = "/mnt/hodgkin/eugene/results/immature/clusters/test/matTrans62/trial4200/jitter.bin"
fileMature = "/mnt/hodgkin/eugene/results/immature/clusters/matTrans62/mature_4200.bin"

N, num_test_trials, \
    probability_soma_spike, average_num_soma_spikes_in_trial, mean_first_soma_spike_time, std_first_soma_spike_time,\
    probability_dend_spike, average_num_dend_spikes_in_trial, mean_first_dend_spike_time, std_first_dend_spike_time = reading.read_jitter(filename)

(_, _, mature_indicators) = reading.read_mature_indicators(fileMature)

mature_neurons = np.where(mature_indicators == 1)[0]

print mature_neurons
print "Number of mature: ", len(mature_neurons)
#mature_neurons = range(N)

mean_first_soma_spike_time_mature = mean_first_soma_spike_time[mature_neurons]
mean_first_dend_spike_time_mature = mean_first_dend_spike_time[mature_neurons]
std_first_soma_spike_time_mature = std_first_soma_spike_time[mature_neurons]
std_first_dend_spike_time_mature = std_first_dend_spike_time[mature_neurons]
probability_soma_spike_mature = probability_soma_spike[mature_neurons]
probability_dend_spike_mature = probability_dend_spike[mature_neurons]
average_num_soma_spikes_in_trial_mature = average_num_soma_spikes_in_trial[
    mature_neurons]
Example #7
0
def write_pajek_network_subset(dirname, trial_number, N, fileSpikes):
    """
    Create .net file with locations and connections between mature HVC-RA neurons in array
        first N mature neurons that spiked are plotted
    """
    file_RA_xy = os.path.join(dirname, "RA_xy_" + str(trial_number) + ".bin")

    file_training = os.path.join(dirname, "training_neurons.bin")
    file_pajek = os.path.join(dirname,
                              "network_subset_" + str(trial_number) + ".net")
    fileMature = os.path.join(dirname, "mature_" + str(trial_number) + ".bin")
    fileSuperSynapses = os.path.join(
        dirname, "RA_RA_super_connections_" + str(trial_number) + ".bin")
    fileWeights = os.path.join(dirname,
                               "weights_" + str(trial_number) + ".bin")

    coord_RA = reading.read_coordinates(file_RA_xy)
    training_neurons = reading.read_training_neurons(file_training)
    (N_RA, _, weights) = reading.read_weights(fileWeights)
    (_, _, mature_indicators) = reading.read_mature_indicators(fileMature)
    (_, _, super_synapses) = reading.read_synapses(fileSuperSynapses)

    #print list(mature_neurons)
    #mature_neurons = range(N_RA)

    # sort array with neurons and training neurons #
    training_neurons.sort()

    #fileDend = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/test/noImmatureOut4/test_spike_times_dend_5.bin"
    #fileSoma = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/test/noImmatureOut4/test_spike_times_soma_5.bin"

    (_, _, spike_times_soma,
     neuron_fired_soma) = reading.read_time_info(fileSpikes)

    ordered_soma_spikes_raw, ordered_soma_raw = zip(
        *sorted(zip(spike_times_soma, neuron_fired_soma)))

    first_mature_spiked = []

    for spikes, neuron_ids in zip(ordered_soma_spikes_raw, ordered_soma_raw):
        if len(first_mature_spiked) >= N:
            break

        if mature_indicators[neuron_ids[0]] == 1:
            first_mature_spiked.append(neuron_ids[0])

    first_mature_spiked.sort()

    num_neurons = len(first_mature_spiked)

    with open(file_pajek, 'w') as f:
        f.write("*Vertices {0}\n".format(num_neurons))

        for i, neuron_id in enumerate(first_mature_spiked):
            if neuron_id in training_neurons:
                f.write('{0} "{1}" {2} {3} {4} ic Green\n'.format(
                    i + 1, neuron_id, coord_RA[neuron_id][0],
                    coord_RA[neuron_id][1], coord_RA[neuron_id][2]))
            else:
                f.write('{0} "{1}" {2} {3} {4} ic Yellow\n'.format(
                    i + 1, neuron_id, coord_RA[neuron_id][0],
                    coord_RA[neuron_id][1], coord_RA[neuron_id][2]))

        f.write("*Arcs\n".format(num_neurons))

        # write targets of HVC(RA) neurons
        for i, source_id in enumerate(first_mature_spiked):
            for target_id in super_synapses[source_id]:
                try:
                    ind = utils.index(first_mature_spiked, target_id)
                    f.write('{0} {1} {2} c Green\n'.format(
                        i + 1, ind + 1, weights[source_id][target_id]))
                except ValueError:
                    continue
Example #8
0
num_cols = 3

#dirname = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/maturationTransition4/"
dirname = "/mnt/hodgkin/eugene/results/immature/clusters/matTrans62/"

trial_number = 32400

fileCoordRA = os.path.join(dirname, "RA_xy_" + str(trial_number) + ".bin")
fileTraining = os.path.join(dirname, "training_neurons.bin")
#fileSoma = os.path.join(dirname, "spike_times_soma_" + str(trial_number) + ".bin")
#fileSoma = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/test/noImmatureOut8/test_spike_times_soma_5.bin"
fileSoma = "/mnt/hodgkin/eugene/results/immature/clusters/test/matTrans62/trial32400/test_spike_times_soma_5.bin"

coord = reading.read_coordinates(fileCoordRA)
training_neurons = reading.read_training_neurons(fileTraining)
(_, _, mature_indicators) = reading.read_mature_indicators(os.path.join(dirname, "mature_"+str(trial_number)+".bin"))

(_, _, spike_times_soma, neuron_fired_soma) = reading.read_time_info(fileSoma)

print "Number of spiked neurons: ",len(spike_times_soma)

for spikes, neuron_id in zip(spike_times_soma, neuron_fired_soma):
    if len(spikes) > 6:
        print "Neuron {0} produced {1} spikes".format(neuron_id[0], len(spikes))

#print "Dedritic spikes: ", neuron_fired_dend
#print "Dendritic spike times: ", spike_times_dend

#print "Somatic spikes: ", neuron_fired_soma
#print "Somatic spike times: ", spike_times_soma