def main():
    star_list = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, STAR_POP_STARTING_FIELDNAME)
    print
    print "Star count: %s" % len(star_list)
    element_count = 15
    print "First %s elements in star list:" % (element_count)
    for star in star_list[:element_count]:
        dist = star["Dist"] * units.kpc
        mass = star["Mass"] * units.solMass
        print "Dist: %s            Mass: %s" % (dist, mass)
    print    

    lens_index = 5200
    source_index = 5470
    lens = star_list[lens_index]
    source = star_list[source_index]

    theta_E = get_angular_Einstein_radius(lens=lens, source=source)
    omega = get_relative_angular_velocity(lens=lens, source=source)

    print "For lens %s:\n%s" % (lens_index, lens)
    print "Distance: %s            Mass: %s" % (lens["Dist"] * units.kpc, lens["Mass"] * units.solMass)
    print "mu_l: %s                mu_b: %s" % (lens["mul"] * units.mas/units.yr, lens["mub"] * units.mas/units.yr)
    print "mu_l: %s                mu_b: %s" % (convert_angular_velocity_units(lens["mul"]), convert_angular_velocity_units(lens["mub"]))
    print
    print "And for source %s:\n%s" % (source_index, source)
    print "Distance: %s            Mass: %s" % (source["Dist"] * units.kpc, source["Mass"] * units.solMass)
    print "mu_l: %s                mu_b: %s" % (source["mul"] * units.mas/units.yr, source["mub"] * units.mas/units.yr)
    print "mu_l: %s                mu_b: %s" % (convert_angular_velocity_units(source["mul"]), convert_angular_velocity_units(source["mub"]))
    print
    print "Angular Einstein radius is: %s" % theta_E
def testing_lightcurve_functions():
    star_catalogue = read_star_pop(STAR_POP_FILEPATH, is_csv=True)
    star_pop = star_catalogue["star_pop"]
    star_pop_segment = star_pop[0:10]

    field_of_vew = 9.5 * units.deg**2
    survey_area = 18000 * units.deg**2
    grid_space_num = survey_area / field_of_vew

    visit_duration = 34 * units.s

    period = (grid_space_num * visit_duration).to(units.h)

    duration = 20 * 24 * units.h
    period = 17.7 * units.h
    night_duration = 10 * units.h

    for star in star_pop_segment:
        baseline_lightcurve_dict = make_baseline_lightcurve(
            star,
            duration,
            period=period,
            night_duration=night_duration,
            old_err_omission=False)

        logger.debug(
            "Magnitude error threshold: {}".format(MAG_ERROR_THRESHOLD))
        logger.debug("GAUSSIAN_MAG_DEBUG: {}".format(GAUSSIAN_MAG_DEBUG))
        plot_lightcurve(baseline_lightcurve_dict,
                        connect_all=False,
                        show_error_bars=True,
                        true_times=True,
                        convert_to_days=True)
Example #3
0
def get_example_catalogue_lists_2():
    """Set up the example source and lens catalogue lists
    For now each catalogue lists consists of a single catalogue
    """
    star_catalogue_example_lens = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    star_catalogue_example_lens["solid_angle"] = SOLID_ANGLE_DEFAULT
    star_catalogue_example_lens["star_pop"] = star_catalogue_example_lens[
        "star_pop"]
    star_catalogue_lens_list = [star_catalogue_example_lens]

    star_example_source = {
        "Dist": str(DIST_SOURCE_DEFAULT.value),
        "V": str(24.5)
    }
    solid_angle_example_source = 1  # This intentionally unitless because we are effectively
    # Removing the solid_angle_source factor from the summation

    star_catalogue_example_source = {
        "star_pop": [star_example_source],
        "solid_angle": solid_angle_example_source
    }

    star_catalogue_lens_list = [star_catalogue_example_lens]
    star_catalogue_source_list = [star_catalogue_example_source]

    star_catalogue_list_dict = {
        "lens": star_catalogue_lens_list,
        "source": star_catalogue_source_list
    }

    return star_catalogue_list_dict
def testing_lightcurve_functions():
    star_catalogue = read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_pop = star_catalogue["star_pop"]
    star_pop_segment = star_pop[0:10]

    field_of_vew = 9.5 * units.deg**2
    survey_area = 18000 * units.deg**2
    grid_space_num = survey_area / field_of_vew

    visit_duration = 34 * units.s

    period = (grid_space_num * visit_duration).to(units.h)

    duration = 20*24 * units.h
    period = 17.7 * units.h
    night_duration = 10*units.h

    for star in star_pop_segment:
        baseline_lightcurve_dict = make_baseline_lightcurve(star, duration, period=period,
                                                            night_duration=night_duration,
                                                            old_err_omission=False)

        logger.debug("Magnitude error threshold: {}".format(MAG_ERROR_THRESHOLD))
        logger.debug("GAUSSIAN_MAG_DEBUG: {}".format(GAUSSIAN_MAG_DEBUG))
        plot_lightcurve(baseline_lightcurve_dict, connect_all=False, show_error_bars=True,
                            true_times=True, convert_to_days=True)
Example #5
0
def calculate_tau_alt_test():
    star_info_dict = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    tau_info_dict = calculate_tau_alt(star_info_dict)
    tau_sum = tau_info_dict["tau"]
    logger.info("tau_sum: {}".format(tau_sum))
    plot_tau_info_alt(tau_info_dict)
def get_example_catalogue_lists():
    """Set up the example source and lens catalogue lists.
    For now each catalogue lists consists of a single catalogue.
    """
    star_catalogue_example = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_catalogue_example["solid_angle"] = SOLID_ANGLE_DEFAULT
    star_catalogue_lens_list = [star_catalogue_example]
    star_catalogue_source_list = [star_catalogue_example]

    star_catalogue_list_dict = {"lens": star_catalogue_lens_list, "source": star_catalogue_source_list}

    return star_catalogue_list_dict
def calculate_optical_depth_alt():
    star_info_dict = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    star_pop = star_info_dict["star_pop"]
    if star_info_dict.has_key("coordinates_gal") and star_info_dict[
            "coordinates_gal"] is not None:
        coord_gal = float(star_info_dict["coordinates_gal"]) * units.deg
    else:
        coord_gal = None

    tau_sum = 0
    dist_source = get_dist_source(coord_gal)
    dist_lens_list = []
    tau_sum_list = []
    tau_addition_term_list = []
    for star in star_pop:
        dist_lens = float(star["Dist"]) * units.kpc
        mass = float(star["Mass"]) * units.solMass
        dist_rel = 1 / ((1 / dist_lens) - (1 / dist_source))
        solid_angle_dimensionless = SOLID_ANGLE_DEFAULT.to(
            units.dimensionless_unscaled,
            equivalencies=units.dimensionless_angles())
        tau_addition_term = (4 * np.pi * G * mass / c**2 /
                             dist_rel) / solid_angle_dimensionless
        tau_addition_term = tau_addition_term.decompose()
        tau_sum += tau_addition_term

        dist_lens_list.append(dist_lens.copy())
        tau_sum_list.append(tau_sum.copy())
        tau_addition_term_list.append(tau_addition_term.copy())

    print tau_sum

    dist_lens_list = units.Quantity(dist_lens_list)
    tau_sum_list = units.Quantity(tau_sum_list)
    tau_addition_term_list = units.Quantity(tau_addition_term_list)

    plt.plot(dist_lens_list, tau_sum_list, "ro")
    plt.xlabel("lens distance (%s)" % dist_lens_list.unit)
    plt.ylabel(
        "tau sum value after addition of term at this lens distance (%s)" %
        tau_sum_list.unit)
    plt.show()

    plt.plot(dist_lens_list, tau_addition_term_list, "ro")
    plt.xlabel("lens distance (%s)" % dist_lens_list.unit)
    plt.ylabel("term added to tau value at this lens distance (%s)" %
               tau_addition_term_list.unit)
    plt.show()

    return tau_sum
def testing_band_functions():
    star_catalogue = read_star_pop(STAR_POP_FILEPATH, is_csv=True)
    star_pop = star_catalogue["star_pop"]
    star = star_pop[0]
    mag_V = float(star["V"])
    logger.debug("mag_V: {}".format(mag_V))

    mag_V_error = simulate_mag_error(mag_V)["mag_err"]
    logger.debug("mag_V_error: {}".format(mag_V_error))

    gaussian_mag_V = np.random.normal(mag_V, mag_V_error)
    logger.debug("gaussian_mag_V: {}".format(gaussian_mag_V))
    logger.debug("")

    gaussian_star = get_gaussian_star(star)

    mag_dict = get_mags(star)
    #print gaussian_star
    #print get_mags(gaussian_star)
    gaussian_mag_dict = get_mags(gaussian_star)
    #print mag_dict
    #print gaussian_mag_dict
    gaussian_mag_dict_2 = get_gaussian_mags(mag_dict)

    gaussian_mag_dict_alt = get_gaussian_mags_alt(mag_dict)

    for band in mag_dict:
        mag = mag_dict[band]
        logger.debug("mag_{}: {}".format(band, mag))

    # log gaussian mags computed by acquiring magnitudes from a star
    # whose V mag has been gaussian randomized
    for band in gaussian_mag_dict:
        gaussian_mag = gaussian_mag_dict[band]
        logger.debug("gaussian_mag_{}: {}".format(band, gaussian_mag))

    # log gaussian mags computed by gaussian randomizing V mag of a mag dict
    # taken from an unmodified star, and then adding the same sigma to each
    # mag from the other bands
    for band in gaussian_mag_dict_2:
        gaussian_mag_2 = gaussian_mag_dict_2[band]
        logger.debug("gaussian_mag_{}_2: {}".format(band, gaussian_mag_2))

    # log gaussian mags computed by gaussian randomizing the mag from each band
    # in a mag dict taken from an unmodified star
    for band in gaussian_mag_dict_alt:
        gaussian_mag_alt = gaussian_mag_dict_alt[band]
        logger.debug("gaussian_mag_{}_alt: {}".format(band, gaussian_mag_alt))

    plot_gaussian_histogram(star)
def testing_band_functions():
    star_catalogue = read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_pop = star_catalogue["star_pop"]
    star = star_pop[0]
    mag_V = float(star["V"])
    logger.debug("mag_V: {}".format(mag_V))

    mag_V_error = simulate_mag_error(mag_V)["mag_err"]
    logger.debug("mag_V_error: {}".format(mag_V_error))

    gaussian_mag_V = np.random.normal(mag_V, mag_V_error)
    logger.debug("gaussian_mag_V: {}".format(gaussian_mag_V))
    logger.debug("")

    gaussian_star = get_gaussian_star(star)

    mag_dict = get_mags(star)
    #print gaussian_star
    #print get_mags(gaussian_star)
    gaussian_mag_dict = get_mags(gaussian_star)
    #print mag_dict
    #print gaussian_mag_dict
    gaussian_mag_dict_2 = get_gaussian_mags(mag_dict)

    gaussian_mag_dict_alt = get_gaussian_mags_alt(mag_dict)

    for band in mag_dict:
        mag = mag_dict[band]
        logger.debug("mag_{}: {}".format(band, mag))

    # log gaussian mags computed by acquiring magnitudes from a star
    # whose V mag has been gaussian randomized
    for band in gaussian_mag_dict:
        gaussian_mag = gaussian_mag_dict[band]
        logger.debug("gaussian_mag_{}: {}".format(band, gaussian_mag))

    # log gaussian mags computed by gaussian randomizing V mag of a mag dict
    # taken from an unmodified star, and then adding the same sigma to each
    # mag from the other bands
    for band in gaussian_mag_dict_2:
        gaussian_mag_2 = gaussian_mag_dict_2[band]
        logger.debug("gaussian_mag_{}_2: {}".format(band, gaussian_mag_2))

    # log gaussian mags computed by gaussian randomizing the mag from each band
    # in a mag dict taken from an unmodified star
    for band in gaussian_mag_dict_alt:
        gaussian_mag_alt = gaussian_mag_dict_alt[band]
        logger.debug("gaussian_mag_{}_alt: {}".format(band, gaussian_mag_alt))

    plot_gaussian_histogram(star)
Example #10
0
def get_example_catalogue_lists():
    """Set up the example source and lens catalogue lists.
    For now each catalogue lists consists of a single catalogue.
    """
    star_catalogue_example = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    star_catalogue_example["solid_angle"] = SOLID_ANGLE_DEFAULT
    star_catalogue_lens_list = [star_catalogue_example]
    star_catalogue_source_list = [star_catalogue_example]

    star_catalogue_list_dict = {
        "lens": star_catalogue_lens_list,
        "source": star_catalogue_source_list
    }

    return star_catalogue_list_dict
def make_csv(filepath):
    if os.path.isfile(filepath):
        star_info = reading_in_star_population.read_star_pop(filepath)
        star_pop = star_info["star_pop"]
        fieldnames = star_info["fieldnames"]

        filename_no_extension = os.path.splitext(os.path.basename(filepath))[0]
        output_filename = filename_no_extension + ".csv"
        output_filepath = os.path.join(OUTPUT_DIR, output_filename)
        with open (output_filepath, "w") as output_file:
            writer = csv.DictWriter(output_file, fieldnames = fieldnames)
            writer.writeheader()
            for star_dict in star_pop:
                writer.writerow(star_dict)

    else:
        print "File does not exist at path %s" % filepath
def calculate_optical_depth_alt():
    star_info_dict = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_pop = star_info_dict["star_pop"]
    if star_info_dict.has_key("coordinates_gal") and star_info_dict["coordinates_gal"] is not None:
        coord_gal = float(star_info_dict["coordinates_gal"]) * units.deg
    else:
        coord_gal = None

    tau_sum = 0
    dist_source = get_dist_source(coord_gal)
    dist_lens_list = []
    tau_sum_list = []
    tau_addition_term_list = []
    for star in star_pop:
        dist_lens = float(star["Dist"]) * units.kpc
        mass = float(star["Mass"]) * units.solMass
        dist_rel = 1 / ( (1/dist_lens) - (1/dist_source) )
        solid_angle_dimensionless = SOLID_ANGLE_DEFAULT.to(units.dimensionless_unscaled, equivalencies=units.dimensionless_angles())
        tau_addition_term = ( 4*np.pi*G*mass/c**2 / dist_rel ) / solid_angle_dimensionless
        tau_addition_term = tau_addition_term.decompose()
        tau_sum += tau_addition_term

        dist_lens_list.append(dist_lens.copy())
        tau_sum_list.append(tau_sum.copy())
        tau_addition_term_list.append(tau_addition_term.copy())

    print tau_sum

    dist_lens_list = units.Quantity(dist_lens_list)
    tau_sum_list = units.Quantity(tau_sum_list)
    tau_addition_term_list = units.Quantity(tau_addition_term_list)

    plt.plot(dist_lens_list, tau_sum_list, "ro")
    plt.xlabel("lens distance (%s)" % dist_lens_list.unit)
    plt.ylabel("tau sum value after addition of term at this lens distance (%s)"
                % tau_sum_list.unit)
    plt.show()

    plt.plot(dist_lens_list, tau_addition_term_list, "ro")
    plt.xlabel("lens distance (%s)" % dist_lens_list.unit)
    plt.ylabel("term added to tau value at this lens distance (%s)"
                % tau_addition_term_list.unit)
    plt.show()

    return tau_sum
def make_csv_sample_alt(filepath, sample_fraction = 0.01):
    if os.path.isfile(filepath):
        star_info = reading_in_star_population.read_star_pop(filepath)
        star_pop = star_info["star_pop"]
        fieldnames = star_info["fieldnames"]
        sample_size = len(star_pop) / sample_fraction
        star_pop_sample = random.sample(star_pop, sample_size)

        filename_no_extension = os.path.splitext(os.path.basename(filepath))[0]
        output_filename = filename_no_extension + "_sample_alt" + str(sample_fraction) + ".csv"
        output_filepath = os.path.join(OUTPUT_DIR, output_filename)
        with open (output_filepath, "w") as output_file:
            writer = csv.DictWriter(output_file, fieldnames = star_pop_fieldnames)
            writer.writeheader()
            for star_dict in star_pop:
                writer.writerow(star_dict)
    else:
        print "File does not exist at path %s" % filepath
def get_example_catalogue_lists_2():
    """Set up the example source and lens catalogue lists
    For now each catalogue lists consists of a single catalogue
    """
    star_catalogue_example_lens = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_catalogue_example_lens["solid_angle"] = SOLID_ANGLE_DEFAULT
    star_catalogue_example_lens["star_pop"] = star_catalogue_example_lens["star_pop"]
    star_catalogue_lens_list = [star_catalogue_example_lens]

    star_example_source = {"Dist": str(DIST_SOURCE_DEFAULT.value), "V": str(24.5)}
    solid_angle_example_source = 1 # This intentionally unitless because we are effectively
                                   # Removing the solid_angle_source factor from the summation

    star_catalogue_example_source = {"star_pop": [star_example_source],
                                     "solid_angle": solid_angle_example_source}

    star_catalogue_lens_list = [star_catalogue_example_lens]
    star_catalogue_source_list = [star_catalogue_example_source]

    star_catalogue_list_dict = {"lens": star_catalogue_lens_list, "source": star_catalogue_source_list}

    return star_catalogue_list_dict
Example #15
0
def main():
    star_list = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, STAR_POP_STARTING_FIELDNAME)
    print
    print "Star count: %s" % len(star_list)
    element_count = 15
    print "First %s elements in star list:" % (element_count)
    for star in star_list[:element_count]:
        dist = star["Dist"] * units.kpc
        mass = star["Mass"] * units.solMass
        print "Dist: %s            Mass: %s" % (dist, mass)
    print

    lens_index = 5200
    source_index = 5470
    lens = star_list[lens_index]
    source = star_list[source_index]

    theta_E = get_angular_Einstein_radius(lens=lens, source=source)
    omega = get_relative_angular_velocity(lens=lens, source=source)

    print "For lens %s:\n%s" % (lens_index, lens)
    print "Distance: %s            Mass: %s" % (lens["Dist"] * units.kpc,
                                                lens["Mass"] * units.solMass)
    print "mu_l: %s                mu_b: %s" % (
        lens["mul"] * units.mas / units.yr, lens["mub"] * units.mas / units.yr)
    print "mu_l: %s                mu_b: %s" % (convert_angular_velocity_units(
        lens["mul"]), convert_angular_velocity_units(lens["mub"]))
    print
    print "And for source %s:\n%s" % (source_index, source)
    print "Distance: %s            Mass: %s" % (source["Dist"] * units.kpc,
                                                source["Mass"] * units.solMass)
    print "mu_l: %s                mu_b: %s" % (source["mul"] * units.mas /
                                                units.yr, source["mub"] *
                                                units.mas / units.yr)
    print "mu_l: %s                mu_b: %s" % (convert_angular_velocity_units(
        source["mul"]), convert_angular_velocity_units(source["mub"]))
    print
    print "Angular Einstein radius is: %s" % theta_E
def calculate_optical_depth_alt_with_impact_param():
    # Set up the example source and lens catalogue lists
    # For now each catalogue lists consists of a single catalogue
    star_catalogue_example = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    star_catalogue_example["solid_angle"] = SOLID_ANGLE_DEFAULT
    star_catalogue_lens_list = [star_catalogue_example]
    star_catalogue_source_list = [star_catalogue_example]

    # Iterate over each source catalogue
    #tau_sum_list = []
    tau_addition_term_list = []
    tau_sum_catalogue_source = 0
    for star_catalogue_source in star_catalogue_source_list:
        star_pop_source = star_catalogue_source["star_pop"]
        solid_angle_source = star_catalogue_source["solid_angle"]

        # Iterate over each source in the catalogue
        tau_sum_source = 0
        for star_source in star_pop_source:
            mag_V_source = float(star_source["V"])
            dist_source = float(star_source["Dist"]) * units.kpc
            # Turning debug flag on always returns a weight of 1,
            # for testing in case something is wrong with the simulated weight
            impact_param_weight = \
                calculating_impact_param.simulate_impact_param_weight(mag_V_source, \
                    precision_model=PRECISION_MODEL, debug=IMPACT_PARAM_WEIGHT_DEBUG)
            if impact_param_weight != 1:
                print "Impact parameter weight != 1"
                print "Impact parameter weight: %s" % impact_param_weight
                print "mag: %s" % mag_V_source
            #print impact_param_weight
            # Iterate over each lens catalogue
            tau_sum_catalogue_lens = 0
            for star_catalogue_lens in star_catalogue_lens_list:
                star_pop_lens = star_catalogue_lens["star_pop"]
                solid_angle_lens = star_catalogue_lens["solid_angle"]

                # Iterate over each lens in the catalogue
                tau_sum_lens = 0
                for star_lens in star_pop_lens:
                    mass_lens = float(star_lens["Mass"]) * units.solMass
                    dist_lens = float(star_lens["Dist"]) * units.kpc
                    #print "dist_lens: %s        dist_source: %s" % (dist_lens, dist_source)
                    #print "mass_lens: %s" % mass_lens
                    # Get tau addition term if lens is closer than source,
                    # using source properties and lens catalogue's solid angle
                    if dist_lens < dist_source:
                        angular_einstein_radius = \
                            get_angular_einstein_radius(mass_lens, dist_lens, dist_source)
                        #print "angular Einstein radius: %s" % angular_einstein_radius
                        tau_addition_term_lens = np.pi * angular_einstein_radius * angular_einstein_radius / solid_angle_lens
                        tau_sum_lens += tau_addition_term_lens
                        tau_addition_term_list.append(
                            tau_addition_term_lens.decompose())
                        #print "tau_addition_term_lens: %s" % tau_addition_term_lens
                    else:
                        pass
                        #print "no Einstein radius"
                        #print "tau_addition_term_lens: 0"

                # Add sum over lenses to sum over lens catalogues
                tau_sum_catalogue_lens += tau_sum_lens
                #print "tau_addition_term_catalogue_lens: %s" % tau_sum_lens
            # Multiply sum over lens catalogues by impact param weight (U),
            # and add to sum over sources
            tau_sum_source += tau_sum_catalogue_lens * impact_param_weight
            #print "tau_addition_term_source: %s" % (tau_sum_catalogue_lens * impact_param_weight)
        # Divide the sum over sources by the source catalogue's solid angle,
        # and add to sum over souce catalogues
        tau_sum_catalogue_source += tau_sum_source / solid_angle_source
        #print "tau_addition_term_catalogue_source: %s" % (tau_sum_source / solid_angle_source)

    # Multiply sum over source catalogues by square of the maximum impact parameter for a microlensing event
    # and store as tau sum
    tau_sum = tau_sum_catalogue_source * u_MAX * u_MAX

    # Get inverse weight, which iterates of source catalogues, and multiply tau sum by it
    tau_sum_inverse_weight = get_inverse_weight(star_catalogue_source_list)
    tau_sum *= tau_sum_inverse_weight

    tau_addition_term_list = units.Quantity(tau_addition_term_list).value
    print "tau: %s" % tau_sum
    #print tau_addition_term_list
    plt.plot(tau_addition_term_list, "ro")
    plt.xlabel("index")
    plt.ylabel("term added to tau")
    plt.show()

    return tau_sum
def calculate_tau_alt_test():
    star_info_dict = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    tau_info_dict = calculate_tau_alt(star_info_dict)
    tau_sum = tau_info_dict["tau"]
    logger.info("tau_sum: {}".format(tau_sum))
    plot_tau_info_alt(tau_info_dict)
def calculate_optical_depth():
    #star_info_dict = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = False)
    star_info_dict = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    star_pop = star_info_dict["star_pop"]
    if star_info_dict.has_key("coordinates_gal") and star_info_dict[
            "coordinates_gal"] is not None:
        coord_gal = float(star_info_dict["coordinates_gal"]) * units.deg
    else:
        coord_gal = None

    last_bin_dist = 0 * units.kpc
    mass_density_bin = []
    star_bins = []
    tau_sum = 0
    dist_source = get_dist_source(coord_gal)
    logger.info("dist_source set to default value: %s" % DIST_SOURCE_DEFAULT)
    if not CALCULATE_SOLID_ANGLE:
        logger.info("solid_angle set to default value: %s" %
                    SOLID_ANGLE_DEFAULT)
    #error_counter = 0
    for i in xrange(len(star_pop)):
        star = star_pop[i]
        dist = float(star["Dist"]) * units.kpc
        mass = float(star["Mass"]) * units.solMass
        logger.debug("dist: %s                 mass: %s" % (dist, mass))

        # If this is the first iteration, the previous distance is set to 0
        if i > 0:
            last_dist = float(star_pop[i - 1]["Dist"]) * units.kpc
        else:
            last_dist = 0 * units.kpc

        logger.debug("last_dist: %s" % last_dist)
        logger.debug("last_bin_dist: %s" % last_bin_dist)
        logger.debug("Comparing dist to last_dist...")
        """
        If current and previous distance don't match, we've moved on to another bin of stars.
        Averages mass density values from the bin of stars that was just completed;
        calculates a tau term from this density, the source distance, and the distances of the completed
        star bin and the previous star bin; and adds term to the tau sum.

        Finally, move on to the next bin by updating the last bin distance and emptying the
        current mass density bin.
        """
        if dist != last_dist:
            if len(mass_density_bin) > 0:
                bin_size = len(mass_density_bin)
                logger.debug("Final mass bin size: %s" % bin_size)
                ro_average = units.Quantity(mass_density_bin).mean()
                logger.debug("Averaged ro: %s" % ro_average)

                logger.debug("dist_source: %s" % dist_source)
                delta_dist = last_dist - last_bin_dist
                logger.debug("delta_dist: %s" % delta_dist)

                tau_addition_term = get_tau_addition_term(
                    ro_average, last_dist, dist_source, delta_dist)
                logger.debug("Adding to tau: %s" % tau_addition_term)
                tau_sum += tau_addition_term


                bin_dict = {"dist": last_dist, "mass_density_average": ro_average, "delta_dist": delta_dist, \
                            "tau_addition_term": tau_addition_term.copy(), "tau_value_after_addition": tau_sum.copy(), "size": bin_size}
                star_bins.append(bin_dict)
                #print "star bin added, tau value: %s" % star_bins[-1]["tau_value_after_addition"]
                #print "tau sum: %s" % tau_sum
                #print "tau value after addition: %s" % bin_dict["tau_value_after_addition"]

            last_bin_dist = last_dist
            mass_density_bin = []
        """
        logger.debug("last_bin_dist: %s" % last_bin_dist)
        if len(star_bins) > 0 and i > len(star_pop)/2:
            latest_star_bin = star_bins[-1]
            latest_tau = latest_star_bin["tau_value_after_addition"]
            #print "latest star bin tau: %s          error count: %s" % (latest_tau, error_counter)
            #if latest_tau <= 3.68105603883e-14:
                #error_counter += 1
                #print "!!!"
                #print latest_star_bin
                #if error_counter >= 0:
                    #sys.exit()
        """
        # Calculate mass density for from, current bin distance, and last bin distance and append
        # to mass density bin.
        mass_density = get_mass_density(mass, last_bin_dist, dist)
        logger.debug("mass_density: %s" % mass_density)
        mass_density_bin.append(mass_density)
        logger.debug("updated mass_density_bin: %s" % mass_density_bin)
        logger.debug("tau_sum: %s" % tau_sum)
        logger.info("")
        logger.info("")
        #if len(star_bins) > 0:
        #print "First star bin tau value: %s" % star_bins[0]["tau_value_after_addition"]
    logger.info("Final tau_sum: %s" % tau_sum)
    logger.info("Number of bins: %s" % len(star_bins))

    print "Final tau_sum: %s" % tau_sum
    print "Number of bins: %s" % len(star_bins)

    with open(STAR_BIN_FILEPATH, "w") as star_bin_file:
        writer = csv.DictWriter(star_bin_file, fieldnames=STAR_BIN_FIELDNAMES)
        writer.writeheader()
        for bin_dict in star_bins:
            writer.writerow(bin_dict)
    if len(star_bins) > 0:
        plot_star_bins(star_bins)

    return tau_sum
def calculate_tau_test():
    star_info_dict = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    calculate_tau(star_info_dict)
def main():
    pass
    """
    pseudocode:

    -read in star pop data

    -time advance star pop data for a given period of time with a given time step size
    -from this, get set of advanced star populations for each step from start-time to end-time

    -calculate whether any source stars passed within a corresponding len's einstein ring
    -for each time step:
        -for each pair of lens and source:
            -Get Einstein ring radius
            -get angular separation between source and lens: magnitude of ((l_source, b_source) - (l_lens, b_lens))
            -if angular separation is less than the einstein ring radius, this counts as an event...
            -...but somehow don't count the same event occuring over multiple steps?

    -Or, alternatively:
        -calculate only the start and end points for time advancement of a start_pop: inital and final star_pop
        -have a function that determines both the angular separation and Einstein ring radius between star pops 
         at any given time between start and end point
        -Also have the function deliver the minimum angular separation - einstein ring difference
        -for each pair of lens and source:
            -call angular separation einstein radius minimum difference function and check if it is less than the 0 (if so it is a lensing event)

    -Say for lens star AB and source star XY we have initial positions ab_i = (a_i, b_i) and xy_i = (x_i, y_i) and final positions 
     ab_f = (a_f, b_f) and xy_f = (x_f, y_f)
        -final position calculated by p_ab(u_ab, ab_i, t_f) = (a_f, b_f) = (v_ab, w_ab) * t_f + (a_i, b_i) where (v_ab, w_ab) is AB velocity 
         u_ab and t_f is user-specified time period
        -equivalent done for XY 
    -angular separation at time t is ang_separation(u_ab, ab_i, u_xy, xy_i, t) = p_ab(u_ab, ab_i, t) - p_xy(u_xy, xy_i, t)
    -einstein ring radius at time t is get_einstein_rad(dist_ab(v_r_ab, ab_i, t), dist_xy(v_r_xy, xy_i, t), m_ab)
        -dist_ab(t) ~= dist_ab_i (basically constant?)
        -OR actually we have radial velocity v_r, so we can time advance distance as well:
         dist_ab(v_r_ab, ab_i, t) = v_r * t + ab_i
        -get_einstein_rad(d_ab, d_xy, m_ab) = sqrt( (4*g*m_ab/c**2) * (1/d_ab - 1/d_xy) )
    -difference_function(u_ab, v_r_ab, ab_i, u_xy, v_r_xy, xy_i, t) \
        = ang_separation(u_ab, ab_i, u_xy, xy_i, t) - get_einstein_rad(dist_ab(v_r_ab, ab_i, t), dist_xy(v_r_xy, xy_i, t), m_ab)

    -if min(difference_function(~) <= 0:
        -event_counter += 1
    ...

    Ok, so actually getting the minimization function by solving d(difference_function)/dt = 0 for t and plugging the t value(s) back
    into the original difference function (and picking whichever result is smaller if their are multiple t solutions to avoid getting max)...
    is going to be a pain mathematically, might need mathematica, then we can compare this to computational method later.

    
    

    """

    star_pop = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH)
    print
    #advanced_star_pop = time_advancing.time_advance(star_pop)
    lens_index = 5200
    source_index = 5470
    lens = star_pop[lens_index]
    source = star_pop[source_index]

    microlensing_happened = do_they_microlens(lens, source)
    
    print microlensing_happened    
def calculate_optical_depth_alt_with_impact_param():
    # Set up the example source and lens catalogue lists
    # For now each catalogue lists consists of a single catalogue
    star_catalogue_example = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_catalogue_example["solid_angle"] = SOLID_ANGLE_DEFAULT
    star_catalogue_lens_list = [star_catalogue_example]
    star_catalogue_source_list = [star_catalogue_example]

    # Iterate over each source catalogue
    #tau_sum_list = []
    tau_addition_term_list = []
    tau_sum_catalogue_source = 0
    for star_catalogue_source in star_catalogue_source_list:
        star_pop_source = star_catalogue_source["star_pop"]
        solid_angle_source =  star_catalogue_source["solid_angle"]

        # Iterate over each source in the catalogue
        tau_sum_source = 0
        for star_source in star_pop_source:
            mag_V_source = float(star_source["V"])
            dist_source = float(star_source["Dist"]) * units.kpc
            # Turning debug flag on always returns a weight of 1,
            # for testing in case something is wrong with the simulated weight
            impact_param_weight = \
                calculating_impact_param.simulate_impact_param_weight(mag_V_source, \
                    precision_model=PRECISION_MODEL, debug=IMPACT_PARAM_WEIGHT_DEBUG)
            if impact_param_weight != 1:
                print "Impact parameter weight != 1"
                print "Impact parameter weight: %s" % impact_param_weight
                print "mag: %s" % mag_V_source
            #print impact_param_weight
            # Iterate over each lens catalogue
            tau_sum_catalogue_lens = 0
            for star_catalogue_lens in star_catalogue_lens_list:
                star_pop_lens = star_catalogue_lens["star_pop"]
                solid_angle_lens = star_catalogue_lens["solid_angle"]

                # Iterate over each lens in the catalogue
                tau_sum_lens = 0
                for star_lens in star_pop_lens:
                    mass_lens = float(star_lens["Mass"]) * units.solMass
                    dist_lens = float(star_lens["Dist"]) * units.kpc
                    #print "dist_lens: %s        dist_source: %s" % (dist_lens, dist_source)
                    #print "mass_lens: %s" % mass_lens
                    # Get tau addition term if lens is closer than source,
                    # using source properties and lens catalogue's solid angle
                    if dist_lens < dist_source:
                        angular_einstein_radius = \
                            get_angular_einstein_radius(mass_lens, dist_lens, dist_source)
                        #print "angular Einstein radius: %s" % angular_einstein_radius
                        tau_addition_term_lens = np.pi * angular_einstein_radius*angular_einstein_radius / solid_angle_lens
                        tau_sum_lens += tau_addition_term_lens
                        tau_addition_term_list.append(tau_addition_term_lens.decompose())
                        #print "tau_addition_term_lens: %s" % tau_addition_term_lens
                    else:
                        pass
                        #print "no Einstein radius"
                        #print "tau_addition_term_lens: 0"

                # Add sum over lenses to sum over lens catalogues
                tau_sum_catalogue_lens += tau_sum_lens
                #print "tau_addition_term_catalogue_lens: %s" % tau_sum_lens
            # Multiply sum over lens catalogues by impact param weight (U),
            # and add to sum over sources
            tau_sum_source += tau_sum_catalogue_lens * impact_param_weight
            #print "tau_addition_term_source: %s" % (tau_sum_catalogue_lens * impact_param_weight)
        # Divide the sum over sources by the source catalogue's solid angle,
        # and add to sum over souce catalogues
        tau_sum_catalogue_source += tau_sum_source / solid_angle_source
        #print "tau_addition_term_catalogue_source: %s" % (tau_sum_source / solid_angle_source)

    # Multiply sum over source catalogues by square of the maximum impact parameter for a microlensing event
    # and store as tau sum
    tau_sum = tau_sum_catalogue_source * u_MAX * u_MAX

    # Get inverse weight, which iterates of source catalogues, and multiply tau sum by it
    tau_sum_inverse_weight = get_inverse_weight(star_catalogue_source_list)
    tau_sum *= tau_sum_inverse_weight

    tau_addition_term_list = units.Quantity(tau_addition_term_list).value
    print "tau: %s" % tau_sum
    #print tau_addition_term_list
    plt.plot(tau_addition_term_list, "ro")
    plt.xlabel("index")
    plt.ylabel("term added to tau")
    plt.show()

    return tau_sum
def calculate_optical_depth():
    #star_info_dict = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = False)
    star_info_dict = reading_in_star_population.read_star_pop(STAR_POP_FILEPATH, is_csv = True)
    star_pop = star_info_dict["star_pop"]
    if star_info_dict.has_key("coordinates_gal") and star_info_dict["coordinates_gal"] is not None:
        coord_gal = float(star_info_dict["coordinates_gal"]) * units.deg
    else:
        coord_gal = None

    last_bin_dist = 0 * units.kpc
    mass_density_bin = []
    star_bins = []
    tau_sum = 0
    dist_source = get_dist_source(coord_gal)
    logger.info("dist_source set to default value: %s" % DIST_SOURCE_DEFAULT)
    if not CALCULATE_SOLID_ANGLE:
        logger.info("solid_angle set to default value: %s" % SOLID_ANGLE_DEFAULT)
    #error_counter = 0
    for i in xrange(len(star_pop)):
        star = star_pop[i]
        dist = float(star["Dist"]) * units.kpc
        mass = float(star["Mass"]) * units.solMass
        logger.debug("dist: %s                 mass: %s" % (dist, mass))

        # If this is the first iteration, the previous distance is set to 0
        if i > 0:
            last_dist = float(star_pop[i - 1]["Dist"]) * units.kpc
        else:
            last_dist = 0 * units.kpc

        logger.debug("last_dist: %s" % last_dist)
        logger.debug("last_bin_dist: %s" % last_bin_dist)
        logger.debug("Comparing dist to last_dist...")

        """
        If current and previous distance don't match, we've moved on to another bin of stars.
        Averages mass density values from the bin of stars that was just completed;
        calculates a tau term from this density, the source distance, and the distances of the completed
        star bin and the previous star bin; and adds term to the tau sum.

        Finally, move on to the next bin by updating the last bin distance and emptying the
        current mass density bin.
        """
        if dist != last_dist:
            if len(mass_density_bin) > 0:
                bin_size = len(mass_density_bin)
                logger.debug("Final mass bin size: %s" % bin_size)
                ro_average = units.Quantity(mass_density_bin).mean()
                logger.debug("Averaged ro: %s" % ro_average)

                logger.debug("dist_source: %s" % dist_source)
                delta_dist = last_dist - last_bin_dist
                logger.debug("delta_dist: %s" % delta_dist)

                tau_addition_term = get_tau_addition_term(ro_average, last_dist, dist_source, delta_dist)
                logger.debug("Adding to tau: %s" % tau_addition_term)
                tau_sum += tau_addition_term


                bin_dict = {"dist": last_dist, "mass_density_average": ro_average, "delta_dist": delta_dist, \
                            "tau_addition_term": tau_addition_term.copy(), "tau_value_after_addition": tau_sum.copy(), "size": bin_size}
                star_bins.append(bin_dict)
                #print "star bin added, tau value: %s" % star_bins[-1]["tau_value_after_addition"]
                #print "tau sum: %s" % tau_sum
                #print "tau value after addition: %s" % bin_dict["tau_value_after_addition"]

            last_bin_dist = last_dist
            mass_density_bin = []

        """
        logger.debug("last_bin_dist: %s" % last_bin_dist)
        if len(star_bins) > 0 and i > len(star_pop)/2:
            latest_star_bin = star_bins[-1]
            latest_tau = latest_star_bin["tau_value_after_addition"]
            #print "latest star bin tau: %s          error count: %s" % (latest_tau, error_counter)
            #if latest_tau <= 3.68105603883e-14:
                #error_counter += 1
                #print "!!!"
                #print latest_star_bin
                #if error_counter >= 0:
                    #sys.exit()
        """
        # Calculate mass density for from, current bin distance, and last bin distance and append
        # to mass density bin.
        mass_density = get_mass_density(mass, last_bin_dist, dist)
        logger.debug("mass_density: %s" % mass_density)
        mass_density_bin.append(mass_density)
        logger.debug("updated mass_density_bin: %s" % mass_density_bin)
        logger.debug("tau_sum: %s" % tau_sum)
        logger.info("")
        logger.info("")
        #if len(star_bins) > 0:
            #print "First star bin tau value: %s" % star_bins[0]["tau_value_after_addition"]
    logger.info("Final tau_sum: %s" % tau_sum)
    logger.info("Number of bins: %s" % len(star_bins))

    print "Final tau_sum: %s" % tau_sum
    print "Number of bins: %s" % len(star_bins)

    with open(STAR_BIN_FILEPATH, "w") as star_bin_file:
        writer = csv.DictWriter(star_bin_file, fieldnames=STAR_BIN_FIELDNAMES)
        writer.writeheader()
        for bin_dict in star_bins:
            writer.writerow(bin_dict)
    if len(star_bins) > 0:
        plot_star_bins(star_bins)

    return tau_sum
Example #23
0
def calculate_tau_test():
    star_info_dict = reading_in_star_population.read_star_pop(
        STAR_POP_FILEPATH, is_csv=True)
    calculate_tau(star_info_dict)