Example #1
0
def offline_gym(
    env: str,
    pkl_path: str,
    num_episodes_for_data_batch: int,
    max_steps: Optional[int],
    seed: Optional[int] = None,
):
    """
    Generate samples from a DiscreteRandomPolicy on the Gym environment and
    saves results in a pandas df parquet.
    """
    initialize_seed(seed)
    env = EnvFactory.make(env)

    policy = DiscreteRandomPolicy.create_for_env(env)
    dataset = RLDataset()
    for i in range(num_episodes_for_data_batch):
        logger.info(f"Starting episode {i}")
        post_step = log_data_post_step(dataset=dataset, mdp_id=str(i), env=env)
        agent = Agent.create_for_env(env,
                                     policy,
                                     post_transition_callback=post_step)
        run_episode(env=env, agent=agent, max_steps=max_steps)

    logger.info(f"Saving dataset with {len(dataset)} samples to {pkl_path}")
    df = dataset.to_pandas_df()
    df.to_pickle(pkl_path)
Example #2
0
def fill_replay_buffer(env, replay_buffer: ReplayBuffer, desired_size: int):
    """ Fill replay buffer with random transitions until size reaches desired_size. """
    assert (
        0 < desired_size and desired_size <= replay_buffer._replay_capacity
    ), f"It's not true that 0 < {desired_size} <= {replay_buffer._replay_capacity}."
    assert replay_buffer.size < desired_size, (
        f"Replay buffer already has {replay_buffer.size} elements. "
        f"(more than desired_size = {desired_size})")
    logger.info(
        f" Starting to fill replay buffer using random policy to size: {desired_size}."
    )
    random_policy = make_random_policy_for_env(env)
    post_step = add_replay_buffer_post_step(replay_buffer, env=env)

    agent = Agent.create_for_env(env,
                                 policy=random_policy,
                                 post_transition_callback=post_step)
    max_episode_steps = env.max_steps
    with tqdm(
            total=desired_size - replay_buffer.size,
            desc=
            f"Filling replay buffer from {replay_buffer.size} to size {desired_size} using random policy",
    ) as pbar:
        mdp_id = 0
        while replay_buffer.size < desired_size:
            last_size = replay_buffer.size
            max_steps = desired_size - replay_buffer.size - 1
            if max_episode_steps is not None:
                max_steps = min(max_episode_steps, max_steps)
            run_episode(env=env,
                        agent=agent,
                        mdp_id=mdp_id,
                        max_steps=max_steps)
            size_delta = replay_buffer.size - last_size
            # The assertion below is commented out because it can't
            # support input samples which has seq_len>1. This should be
            # treated as a bug, and need to be fixed in the future.
            # assert (
            #     size_delta >= 0
            # ), f"size delta is {size_delta} which should be non-negative."
            pbar.update(n=size_delta)
            mdp_id += 1
            if size_delta <= 0:
                # replay buffer size isn't increasing... so stop early
                break

    if replay_buffer.size >= desired_size:
        logger.info(
            f"Successfully filled replay buffer to size: {replay_buffer.size}!"
        )
    else:
        logger.info(
            f"Stopped early and filled replay buffer to size: {replay_buffer.size}."
        )
Example #3
0
def fill_replay_buffer(env: Env, replay_buffer: ReplayBuffer,
                       desired_size: int):
    """ Fill replay buffer with random transitions until size reaches desired_size. """
    assert (
        0 < desired_size and desired_size <= replay_buffer._replay_capacity
    ), f"It's not true that 0 < {desired_size} <= {replay_buffer._replay_capacity}."
    assert replay_buffer.size < desired_size, (
        f"Replay buffer already has {replay_buffer.size} elements. "
        f"(more than desired_size = {desired_size})")
    logger.info(f"Starting to fill replay buffer to size: {desired_size}.")
    random_policy = make_random_policy_for_env(env)
    post_step = add_replay_buffer_post_step(replay_buffer, env=env)
    agent = Agent.create_for_env(env,
                                 policy=random_policy,
                                 post_transition_callback=post_step)
    max_episode_steps = get_max_steps(env)
    with tqdm(
            total=desired_size - replay_buffer.size,
            desc=
            f"Filling replay buffer from {replay_buffer.size} to size {desired_size}",
    ) as pbar:
        mdp_id = 0
        while replay_buffer.size < desired_size:
            last_size = replay_buffer.size
            max_steps = desired_size - replay_buffer.size - 1
            if max_episode_steps is not None:
                max_steps = min(max_episode_steps, max_steps)
            run_episode(env=env,
                        agent=agent,
                        mdp_id=mdp_id,
                        max_steps=max_steps)
            size_delta = replay_buffer.size - last_size
            assert (
                size_delta >=
                0), f"size delta is {size_delta} which should be non-negative."
            pbar.update(n=size_delta)
            mdp_id += 1
            if size_delta == 0:
                # replay buffer size isn't increasing... so stop early
                break

    if replay_buffer.size >= desired_size:
        logger.info(
            f"Successfully filled replay buffer to size: {replay_buffer.size}!"
        )
    else:
        logger.info(
            f"Stopped early and filled replay buffer to size: {replay_buffer.size}."
        )
Example #4
0
 def __iter__(self):
     self.env.reset()
     for i in range(self.num_episodes):
         trajectory = run_episode(
             self.env, self.agent, max_steps=self.max_steps, mdp_id=i
         )
         yield trajectory.to_dict()
Example #5
0
def evaluate_gym(
    env: str,
    model,
    eval_temperature: float,
    num_eval_episodes: int,
    passing_score_bar: float,
    max_steps: Optional[int] = None,
):
    predictor = DiscreteDqnTorchPredictor(model)
    predictor.softmax_temperature = eval_temperature

    env = EnvFactory.make(env)
    policy = TorchPredictorPolicy(predictor)
    agent = Agent(policy=policy, action_extractor=lambda x: x.item())

    rewards = []
    for _ in range(num_eval_episodes):
        ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps)
        rewards.append(ep_reward)

    avg_reward = np.mean(rewards)
    logger.info(f"Average reward over {num_eval_episodes} is {avg_reward}, "
                f"which passes the bar of {passing_score_bar}!\n"
                f"List of rewards: {rewards}")
    assert avg_reward >= passing_score_bar
Example #6
0
def train_policy(
    env: EnvWrapper,
    training_policy: Policy,
    num_train_episodes: int,
    post_step: Optional[PostStep] = None,
    post_episode: Optional[PostEpisode] = None,
    use_gpu: bool = False,
) -> np.ndarray:
    device = torch.device("cuda") if use_gpu else torch.device("cpu")
    agent = Agent.create_for_env(
        env,
        policy=training_policy,
        post_transition_callback=post_step,
        post_episode_callback=post_episode,
        device=device,
    )
    running_reward = 0
    writer = SummaryWriter()
    with summary_writer_context(writer):
        train_rewards = []
        with trange(num_train_episodes, unit=" epoch") as t:
            for i in t:
                # Note: run_episode also performs a training step for the agent, if specified in post_step
                trajectory = run_episode(env=env, agent=agent, mdp_id=i, max_steps=200)
                ep_reward = trajectory.calculate_cumulative_reward()
                train_rewards.append(ep_reward)
                running_reward *= REWARD_DECAY
                running_reward += (1 - REWARD_DECAY) * ep_reward
                t.set_postfix(reward=running_reward)

    logger.info("============Train rewards=============")
    logger.info(train_rewards)
    logger.info(f"average: {np.mean(train_rewards)};\tmax: {np.max(train_rewards)}")
    return np.array(train_rewards)
Example #7
0
def evaluate_gym(
    env_name: str,
    model: torch.nn.Module,
    eval_temperature: float,
    num_eval_episodes: int,
    passing_score_bar: float,
    max_steps: Optional[int] = None,
):
    env: gym.Env = EnvFactory.make(env_name)
    policy = create_predictor_policy_from_model(
        env, model, eval_temperature=eval_temperature)

    # since we already return softmax action, override action_extractor
    agent = Agent.create_for_env(
        env, policy=policy, action_extractor=policy.get_action_extractor())

    rewards = []
    for _ in range(num_eval_episodes):
        ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps)
        rewards.append(ep_reward)

    avg_reward = np.mean(rewards)
    logger.info(f"Average reward over {num_eval_episodes} is {avg_reward}.\n"
                f"List of rewards: {rewards}")
    assert (avg_reward >= passing_score_bar
            ), f"{avg_reward} fails to pass the bar of {passing_score_bar}!"
Example #8
0
def run_test(
    env: str,
    model: ModelManager__Union,
    replay_memory_size: int,
    train_every_ts: int,
    train_after_ts: int,
    num_episodes: int,
    max_steps: Optional[int],
    last_score_bar: float,
):
    env = EnvFactory.make(env)
    env.seed(SEED)
    env.action_space.seed(SEED)
    normalization = build_normalizer(env)
    logger.info(f"Normalization is {normalization}")

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=False,
        reward_options=RewardOptions(),
        normalization_data_map=normalization,
    )

    policy = manager.create_policy()
    replay_buffer = ReplayBuffer.create_from_env(
        env=env,
        replay_memory_size=replay_memory_size,
        batch_size=trainer.minibatch_size,
    )

    post_step = train_with_replay_buffer_post_step(
        replay_buffer=replay_buffer,
        trainer=trainer,
        training_freq=train_every_ts,
        batch_size=trainer.minibatch_size,
        replay_burnin=train_after_ts,
    )

    agent = Agent.create_for_env(env,
                                 policy=policy,
                                 post_transition_callback=post_step)

    reward_history = []
    for i in range(num_episodes):
        logger.info(f"running episode {i}")
        ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps)
        reward_history.append(ep_reward)

    assert reward_history[-1] >= last_score_bar, (
        f"reward after {len(reward_history)} episodes is {reward_history[-1]},"
        f"less than < {last_score_bar}...\n"
        f"Full reward history: {reward_history}")

    return reward_history
Example #9
0
def run_test(
    env_name: str,
    model: ModelManager__Union,
    replay_memory_size: int,
    train_every_ts: int,
    train_after_ts: int,
    num_train_episodes: int,
    max_steps: Optional[int],
    passing_score_bar: float,
    num_eval_episodes: int,
    use_gpu: bool,
):
    env = EnvFactory.make(env_name)
    env.seed(SEED)
    env.action_space.seed(SEED)
    normalization = build_normalizer(env)
    logger.info(f"Normalization is: \n{pprint.pformat(normalization)}")

    manager = model.value
    try:
        # pyre-fixme[16]: `Env` has no attribute `state_feature_config_provider`.
        manager.state_feature_config_provider = env.state_feature_config_provider
        logger.info(
            f"Using environment's state_feature_config_provider.\n"
            f"{manager.state_feature_config_provider}"
        )
    except AttributeError:
        logger.info("state_feature_config_provider override not applicable")

    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=normalization,
    )
    training_policy = manager.create_policy(serving=False)

    replay_buffer = ReplayBuffer.create_from_env(
        env=env,
        replay_memory_size=replay_memory_size,
        batch_size=trainer.minibatch_size,
    )

    device = torch.device("cuda") if use_gpu else torch.device("cpu")
    # first fill the replay buffer to burn_in
    train_after_ts = max(train_after_ts, trainer.minibatch_size)
    fill_replay_buffer(
        env=env, replay_buffer=replay_buffer, desired_size=train_after_ts
    )

    post_step = train_with_replay_buffer_post_step(
        replay_buffer=replay_buffer,
        env=env,
        trainer=trainer,
        training_freq=train_every_ts,
        batch_size=trainer.minibatch_size,
        device=device,
    )

    agent = Agent.create_for_env(
        env, policy=training_policy, post_transition_callback=post_step, device=device
    )

    writer = SummaryWriter()
    with summary_writer_context(writer):
        train_rewards = []
        for i in range(num_train_episodes):
            trajectory = run_episode(
                env=env, agent=agent, mdp_id=i, max_steps=max_steps
            )
            ep_reward = trajectory.calculate_cumulative_reward()
            train_rewards.append(ep_reward)
            logger.info(
                f"Finished training episode {i} (len {len(trajectory)})"
                f" with reward {ep_reward}."
            )

    logger.info("============Train rewards=============")
    logger.info(train_rewards)
    logger.info(f"average: {np.mean(train_rewards)};\tmax: {np.max(train_rewards)}")

    # Check whether the max score passed the score bar; we explore during training
    # the return could be bad (leading to flakiness in C51 and QRDQN).
    assert np.max(train_rewards) >= passing_score_bar, (
        f"max reward ({np.max(train_rewards)})after training for "
        f"{len(train_rewards)} episodes is less than < {passing_score_bar}.\n"
    )

    serving_policy = manager.create_policy(serving=True)
    agent = Agent.create_for_env_with_serving_policy(env, serving_policy)

    eval_rewards = evaluate_for_n_episodes(
        n=num_eval_episodes, env=env, agent=agent, max_steps=max_steps
    ).squeeze(1)

    logger.info("============Eval rewards==============")
    logger.info(eval_rewards)
    logger.info(f"average: {np.mean(eval_rewards)};\tmax: {np.max(eval_rewards)}")
    assert np.mean(eval_rewards) >= passing_score_bar, (
        f"Predictor reward is {np.mean(eval_rewards)},"
        f"less than < {passing_score_bar}.\n"
    )
Example #10
0
def run_test(
    env_name: str,
    model: ModelManager__Union,
    replay_memory_size: int,
    train_every_ts: int,
    train_after_ts: int,
    num_train_episodes: int,
    max_steps: Optional[int],
    passing_score_bar: float,
    num_eval_episodes: int,
    use_gpu: bool,
):
    env = EnvFactory.make(env_name)
    env.seed(SEED)
    env.action_space.seed(SEED)
    normalization = build_normalizer(env)
    logger.info(f"Normalization is: \n{pprint.pformat(normalization)}")

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=normalization,
    )
    training_policy = manager.create_policy(serving=False)

    replay_buffer = ReplayBuffer.create_from_env(
        env=env,
        replay_memory_size=replay_memory_size,
        batch_size=trainer.minibatch_size,
    )

    device = torch.device("cuda") if use_gpu else None
    # first fill the replay buffer to burn_in
    train_after_ts = max(train_after_ts, trainer.minibatch_size)
    fill_replay_buffer(env=env,
                       replay_buffer=replay_buffer,
                       desired_size=train_after_ts)

    post_step = train_with_replay_buffer_post_step(
        replay_buffer=replay_buffer,
        env=env,
        trainer=trainer,
        training_freq=train_every_ts,
        batch_size=trainer.minibatch_size,
        device=device,
    )

    agent = Agent.create_for_env(
        env,
        policy=training_policy,
        post_transition_callback=post_step,
        # pyre-fixme[6]: Expected `Union[str, torch.device]` for 4th param but got
        #  `Optional[torch.device]`.
        device=device,
    )

    writer = SummaryWriter()
    with summary_writer_context(writer):
        train_rewards = []
        for i in range(num_train_episodes):
            trajectory = run_episode(env=env,
                                     agent=agent,
                                     mdp_id=i,
                                     max_steps=max_steps)
            ep_reward = trajectory.calculate_cumulative_reward()
            train_rewards.append(ep_reward)
            logger.info(
                f"Finished training episode {i} with reward {ep_reward}.")

    assert train_rewards[-1] >= passing_score_bar, (
        f"reward after {len(train_rewards)} episodes is {train_rewards[-1]},"
        f"less than < {passing_score_bar}...\n"
        f"Full reward history: {train_rewards}")

    logger.info("============Train rewards=============")
    logger.info(train_rewards)

    serving_policy = manager.create_policy(serving=True)
    agent = Agent.create_for_env_with_serving_policy(env, serving_policy)

    eval_rewards = evaluate_for_n_episodes(n=num_eval_episodes,
                                           env=env,
                                           agent=agent,
                                           max_steps=max_steps).squeeze(1)
    assert np.mean(eval_rewards) >= passing_score_bar, (
        f"Predictor reward is {np.mean(eval_rewards)},"
        f"less than < {passing_score_bar}...\n"
        f"Full eval rewards: {eval_rewards}.")

    logger.info("============Eval rewards==============")
    logger.info(eval_rewards)
Example #11
0
def train_mdnrnn_and_train_on_embedded_env(
    env_name: str,
    embedding_model: ModelManager__Union,
    num_embedding_train_transitions: int,
    seq_len: int,
    batch_size: int,
    num_embedding_train_epochs: int,
    train_model: ModelManager__Union,
    num_state_embed_transitions: int,
    num_agent_train_epochs: int,
    num_agent_eval_epochs: int,
    use_gpu: bool,
    passing_score_bar: float,
    # pyre-fixme[9]: saved_mdnrnn_path has type `str`; used as `None`.
    saved_mdnrnn_path: str = None,
):
    """ Train an agent on embedded states by the MDNRNN. """
    env = EnvFactory.make(env_name)
    env.seed(SEED)

    embedding_manager = embedding_model.value
    embedding_trainer = embedding_manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=build_normalizer(env),
    )

    device = "cuda" if use_gpu else "cpu"
    embedding_trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        embedding_trainer, device, env
    )
    if saved_mdnrnn_path is None:
        # train from scratch
        embedding_trainer = train_mdnrnn(
            env=env,
            trainer=embedding_trainer,
            trainer_preprocessor=embedding_trainer_preprocessor,
            num_train_transitions=num_embedding_train_transitions,
            seq_len=seq_len,
            batch_size=batch_size,
            num_train_epochs=num_embedding_train_epochs,
        )
    else:
        # load a pretrained model, and just evaluate it
        embedding_trainer.memory_network.mdnrnn.load_state_dict(
            torch.load(saved_mdnrnn_path)
        )

    # create embedding dataset
    embed_rb, state_min, state_max = create_embed_rl_dataset(
        env=env,
        memory_network=embedding_trainer.memory_network,
        num_state_embed_transitions=num_state_embed_transitions,
        batch_size=batch_size,
        seq_len=seq_len,
        hidden_dim=embedding_trainer.params.hidden_size,
        use_gpu=use_gpu,
    )
    embed_env = StateEmbedEnvironment(
        gym_env=env,
        mdnrnn=embedding_trainer.memory_network,
        max_embed_seq_len=seq_len,
        state_min_value=state_min,
        state_max_value=state_max,
    )
    agent_manager = train_model.value
    agent_trainer = agent_manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=build_normalizer(embed_env),
    )
    device = "cuda" if use_gpu else "cpu"
    agent_trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        agent_trainer, device, env
    )
    num_batch_per_epoch = embed_rb.size // batch_size
    for epoch in range(num_agent_train_epochs):
        for _ in tqdm(range(num_batch_per_epoch), desc=f"epoch {epoch}"):
            batch = embed_rb.sample_transition_batch_tensor(batch_size=batch_size)
            preprocessed_batch = agent_trainer_preprocessor(batch)
            agent_trainer.train(preprocessed_batch)

    # evaluate model
    rewards = []
    policy = agent_manager.create_policy(serving=False)
    agent = Agent.create_for_env(embed_env, policy=policy, device=device)
    for i in range(num_agent_eval_epochs):
        ep_reward = run_episode(env=embed_env, agent=agent)
        rewards.append(ep_reward)
        logger.info(f"Finished eval episode {i} with reward {ep_reward}.")
    logger.info(f"Average eval reward is {np.mean(rewards)}.")
    assert (
        np.mean(rewards) >= passing_score_bar
    ), f"average reward doesn't pass our bar {passing_score_bar}"
    return rewards
Example #12
0
def run_test(
    env: str,
    model: ModelManager__Union,
    replay_memory_size: int,
    train_every_ts: int,
    train_after_ts: int,
    num_train_episodes: int,
    max_steps: Optional[int],
    passing_score_bar: float,
    num_eval_episodes: int,
    use_gpu: bool,
):
    env = EnvFactory.make(env)
    env.seed(SEED)
    env.action_space.seed(SEED)
    normalization = build_normalizer(env)
    logger.info(f"Normalization is {normalization}")

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=normalization,
    )

    replay_buffer = ReplayBuffer.create_from_env(
        env=env,
        replay_memory_size=replay_memory_size,
        batch_size=trainer.minibatch_size,
    )

    device = torch.device("cuda") if use_gpu else None
    post_step = train_with_replay_buffer_post_step(
        replay_buffer=replay_buffer,
        trainer=trainer,
        training_freq=train_every_ts,
        batch_size=trainer.minibatch_size,
        replay_burnin=train_after_ts,
        device=device,
    )

    training_policy = manager.create_policy(serving=False)
    agent = Agent.create_for_env(env,
                                 policy=training_policy,
                                 post_transition_callback=post_step,
                                 device=device)

    train_rewards = []
    for i in range(num_train_episodes):
        ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps)
        train_rewards.append(ep_reward)
        logger.info(f"Finished training episode {i} with reward {ep_reward}.")

    assert train_rewards[-1] >= passing_score_bar, (
        f"reward after {len(train_rewards)} episodes is {train_rewards[-1]},"
        f"less than < {passing_score_bar}...\n"
        f"Full reward history: {train_rewards}")

    logger.info("============Train rewards=============")
    logger.info(train_rewards)

    def gym_to_reagent_serving(
            obs: np.array) -> Tuple[torch.Tensor, torch.Tensor]:
        obs_tensor = torch.tensor(obs).float().unsqueeze(0)
        presence_tensor = torch.ones_like(obs_tensor)
        return (obs_tensor, presence_tensor)

    serving_policy = manager.create_policy(serving=True)
    agent = Agent.create_for_env(env,
                                 policy=serving_policy,
                                 obs_preprocessor=gym_to_reagent_serving)

    eval_rewards = []
    for i in range(num_eval_episodes):
        ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps)
        eval_rewards.append(ep_reward)
        logger.info(f"Finished eval episode {i} with reward {ep_reward}.")

    assert np.mean(eval_rewards) >= passing_score_bar, (
        f"Predictor reward is {np.mean(eval_rewards)},"
        f"less than < {passing_score_bar}...\n"
        f"Full eval rewards: {eval_rewards}.")

    logger.info("============Eval rewards==============")
    logger.info(eval_rewards)