def state_feature_config_provider( self) -> ModelFeatureConfigProvider__Union: """ For online gym """ raw = RawModelFeatureConfigProvider( float_feature_infos=[ rlt.FloatFeatureInfo(name="arm0_sample", feature_id=0), rlt.FloatFeatureInfo(name="arm1_sample", feature_id=1), rlt.FloatFeatureInfo(name="arm2_sample", feature_id=2), rlt.FloatFeatureInfo(name="arm3_sample", feature_id=3), rlt.FloatFeatureInfo(name="arm4_sample", feature_id=4), ], id_list_feature_configs=[ rlt.IdListFeatureConfig(name="legal", feature_id=100, id_mapping_name="legal_actions") ], id_score_list_feature_configs=[ rlt.IdScoreListFeatureConfig(name="mu_changes", feature_id=1000, id_mapping_name="arms_list") ], id_mapping_config={ "legal_actions": rlt.IdMapping(ids=[0, 1, 2, 3, 4, 5]), "arms_list": rlt.IdMapping(ids=[0, 1, 2, 3, 4]), }, ) # pyre-fixme[16]: `ModelFeatureConfigProvider__Union` has no attribute # `make_union_instance`. return ModelFeatureConfigProvider__Union.make_union_instance(raw)
def test_discrete_wrapper_with_id_list(self): state_normalization_parameters = {i: _cont_norm() for i in range(1, 5)} state_preprocessor = Preprocessor(state_normalization_parameters, False) action_dim = 2 state_feature_config = rlt.ModelFeatureConfig( float_feature_infos=[ rlt.FloatFeatureInfo(name=str(i), feature_id=i) for i in range(1, 5) ], id_list_feature_configs=[ rlt.IdListFeatureConfig(name="A", feature_id=10, id_mapping_name="A_mapping") ], id_mapping_config={"A_mapping": rlt.IdMapping(ids=[0, 1, 2])}, ) embedding_concat = models.EmbeddingBagConcat( state_dim=len(state_normalization_parameters), model_feature_config=state_feature_config, embedding_dim=8, ) dqn = models.Sequential( embedding_concat, rlt.TensorFeatureData(), models.FullyConnectedDQN( embedding_concat.output_dim, action_dim=action_dim, sizes=[16], activations=["relu"], ), ) dqn_with_preprocessor = DiscreteDqnWithPreprocessor( dqn, state_preprocessor, state_feature_config) action_names = ["L", "R"] wrapper = DiscreteDqnPredictorWrapper(dqn_with_preprocessor, action_names, state_feature_config) input_prototype = dqn_with_preprocessor.input_prototype()[0] output_action_names, q_values = wrapper(input_prototype) self.assertEqual(action_names, output_action_names) self.assertEqual(q_values.shape, (1, 2)) feature_id_to_name = { config.feature_id: config.name for config in state_feature_config.id_list_feature_configs } state_id_list_features = { feature_id_to_name[k]: v for k, v in input_prototype.id_list_features.items() } state_with_presence = input_prototype.float_features_with_presence expected_output = dqn( rlt.FeatureData( float_features=state_preprocessor(*state_with_presence), id_list_features=state_id_list_features, )) self.assertTrue((expected_output == q_values).all())
def test_fully_connected_with_embedding(self): # Intentionally used this long path to make sure we included it in __init__.py chooser = DiscreteDQNNetBuilder__Union( FullyConnectedWithEmbedding=discrete_dqn. fully_connected_with_embedding.FullyConnectedWithEmbedding()) self._test_discrete_dqn_net_builder(chooser) # only id_list state_feature_config = rlt.ModelFeatureConfig( float_feature_infos=[ rlt.FloatFeatureInfo(name=str(i), feature_id=i) for i in range(1, 5) ], id_list_feature_configs=[ rlt.IdListFeatureConfig(name="A", feature_id=10, id_mapping_name="A_mapping") ], id_mapping_config={"A_mapping": rlt.IdMapping(ids=[0, 1, 2])}, ) self._test_discrete_dqn_net_builder( chooser, state_feature_config=state_feature_config) # with id_score_list state_feature_config = rlt.ModelFeatureConfig( float_feature_infos=[ rlt.FloatFeatureInfo(name=str(i), feature_id=i) for i in range(1, 5) ], id_list_feature_configs=[ rlt.IdListFeatureConfig(name="A", feature_id=10, id_mapping_name="A_mapping") ], id_score_list_feature_configs=[ rlt.IdScoreListFeatureConfig(name="B", feature_id=100, id_mapping_name="A_mapping") ], id_mapping_config={"A_mapping": rlt.IdMapping(ids=[0, 1, 2])}, ) self._test_discrete_dqn_net_builder( chooser, state_feature_config=state_feature_config)