def main(): args = parser.parse_args() pp.pprint(vars(args)) config = vars(args) # train with different datasets if args.dataset == 'oracle': oracle_model = OracleLstm(num_vocabulary=args.vocab_size, batch_size=args.batch_size, emb_dim=args.gen_emb_dim, hidden_dim=args.hidden_dim, sequence_length=args.seq_len, start_token=args.start_token) oracle_loader = OracleDataLoader(args.batch_size, args.seq_len) gen_loader = OracleDataLoader(args.batch_size, args.seq_len) generator = models.get_generator(args.g_architecture, vocab_size=args.vocab_size, batch_size=args.batch_size, seq_len=args.seq_len, gen_emb_dim=args.gen_emb_dim, mem_slots=args.mem_slots, head_size=args.head_size, num_heads=args.num_heads, hidden_dim=args.hidden_dim, start_token=args.start_token) discriminator = models.get_discriminator(args.d_architecture, batch_size=args.batch_size, seq_len=args.seq_len, vocab_size=args.vocab_size, dis_emb_dim=args.dis_emb_dim, num_rep=args.num_rep, sn=args.sn) oracle_train(generator, discriminator, oracle_model, oracle_loader, gen_loader, config) elif args.dataset in ['image_coco', 'emnlp_news']: data_file = os.path.join(args.data_dir, '{}.txt'.format(args.dataset)) seq_len, vocab_size = text_precess(data_file) config['seq_len'] = seq_len # override the sequence length config['vocab_size'] = vocab_size print('seq_len: %d, vocab_size: %d' % (seq_len, vocab_size)) oracle_loader = RealDataLoader(args.batch_size, args.seq_len) generator = models.get_generator(args.g_architecture, vocab_size=vocab_size, batch_size=args.batch_size, seq_len=seq_len, gen_emb_dim=args.gen_emb_dim, mem_slots=args.mem_slots, head_size=args.head_size, num_heads=args.num_heads, hidden_dim=args.hidden_dim, start_token=args.start_token) discriminator = models.get_discriminator(args.d_architecture, batch_size=args.batch_size, seq_len=seq_len, vocab_size=vocab_size, dis_emb_dim=args.dis_emb_dim, num_rep=args.num_rep, sn=args.sn) f_classifier = models.get_classifier(args.f_architecture, scope="f_classifier", batch_size=args.batch_size, seq_len=seq_len, vocab_size=vocab_size, dis_emb_dim=args.f_emb_dim, num_rep=args.num_rep, sn=args.sn) real_train(generator, discriminator, f_classifier, oracle_loader, config) else: raise NotImplementedError('{}: unknown dataset!'.format(args.dataset))
data_file = os.path.join('data', '{}.txt'.format(dataset)) oracle_file = os.path.join(test_samples_dir, 'oracle_{}.txt'.format(dataset)) test_file = os.path.join('data', 'testdata/test.txt') if not os.path.exists(test_samples_dir): os.makedirs(test_samples_dir) seq_len, vocab_size = text_precess(data_file) print('seq_len: %d, vocab_size: %d' % (seq_len, vocab_size)) generator = models.get_generator(args.g_architecture, vocab_size=vocab_size, batch_size=args.batch_size, seq_len=seq_len, gen_emb_dim=args.gen_emb_dim, mem_slots=args.mem_slots, head_size=args.head_size, num_heads=args.num_heads, hidden_dim=args.hidden_dim, start_token=args.start_token) oracle_loader = RealDataLoader(args.batch_size, seq_len) # placeholder definitions x_real = tf.placeholder(tf.int32, [args.batch_size, seq_len], name="x_real") # tokens of oracle sequences temperature = tf.Variable(1., trainable=False, name='temperature') x_fake_onehot_appr, x_fake, g_pretrain_loss, gen_o = generator(x_real=x_real, temperature=temperature) with tf.Session() as sess: # tf.global_variables_initializer().run() new_saver = tf.train.import_meta_graph(meta_file) new_saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir)) index_word_dict = get_oracle_file(data_file, oracle_file, seq_len)
def main(): args = parser.parse_args() # pp.pprint(vars(args)) config = vars(args) # train with different datasets if args.dataset == 'oracle': oracle_model = OracleLstm(num_vocabulary=args.vocab_size, batch_size=args.batch_size, emb_dim=args.gen_emb_dim, hidden_dim=args.hidden_dim, sequence_length=args.seq_len, start_token=args.start_token) oracle_loader = OracleDataLoader(args.batch_size, args.seq_len) gen_loader = OracleDataLoader(args.batch_size, args.seq_len) generator = models.get_generator(args.g_architecture, vocab_size=args.vocab_size, batch_size=args.batch_size, seq_len=args.seq_len, gen_emb_dim=args.gen_emb_dim, mem_slots=args.mem_slots, head_size=args.head_size, num_heads=args.num_heads, hidden_dim=args.hidden_dim, start_token=args.start_token) discriminator = models.get_discriminator(args.d_architecture, batch_size=args.batch_size, seq_len=args.seq_len, vocab_size=args.vocab_size, dis_emb_dim=args.dis_emb_dim, num_rep=args.num_rep, sn=args.sn) oracle_train(generator, discriminator, oracle_model, oracle_loader, gen_loader, config) elif args.dataset in ['image_coco', 'emnlp_news', 'emnlp_news_small']: data_file = os.path.join(args.data_dir, '{}.txt'.format(args.dataset)) seq_len, vocab_size, word_index_dict, index_word_dict = text_precess( data_file) config['seq_len'] = seq_len config['vocab_size'] = vocab_size # print('seq_len: %d, vocab_size: %d' % (seq_len, vocab_size)) oracle_loader = RealDataLoader(args.batch_size, args.seq_len) generator = models.get_generator(args.g_architecture, vocab_size=vocab_size, batch_size=args.batch_size, seq_len=seq_len, gen_emb_dim=args.gen_emb_dim, mem_slots=args.mem_slots, head_size=args.head_size, num_heads=args.num_heads, hidden_dim=args.hidden_dim, start_token=args.start_token) discriminator = models.get_discriminator(args.d_architecture, batch_size=args.batch_size, seq_len=seq_len, vocab_size=vocab_size, dis_emb_dim=args.dis_emb_dim, num_rep=args.num_rep, sn=args.sn) # print("gen params = ", count_params(generator.trainable_variables)) # print("disc params = ", count_params(discriminator.trainable_variables)) # sys.stdout.flush() load_model = False if config['load_saved_model'] != "": log_dir_path = os.path.dirname(config['load_saved_model']) config['log_dir'] = log_dir_path config['sample_dir'] = os.path.join( os.path.split(log_dir_path)[0], 'samples') index_word_dict = load_index_to_word_dict( os.path.join(config['log_dir'], "index_to_word_dict.json")) word_index_dict = {v: k for k, v in index_word_dict.items()} load_model = True else: if not os.path.exists(config['log_dir']): os.makedirs(config['log_dir']) json.dump( index_word_dict, open( os.path.join(config['log_dir'], "index_to_word_dict.json"), 'w')) json.dump( word_index_dict, open( os.path.join(config['log_dir'], "word_to_index_dict.json"), 'w')) pp.pprint(config) print('seq_len: %d, vocab_size: %d' % (seq_len, vocab_size)) sys.stdout.flush() real_train(generator, discriminator, oracle_loader, config, word_index_dict, index_word_dict, load_model=load_model) if args.dataset == "emnlp_news" or args.dataset == "emnlp_news_small": call([ "python", 'bleu_post_training_emnlp.py', os.path.join(os.path.split(config['log_dir'])[0], 'samples'), 'na' ], cwd=".") elif args.dataset == "image_coco": call([ "python", 'bleu_post_training.py', os.path.join(os.path.split(config['log_dir'])[0], 'samples'), 'na' ], cwd=".") elif args.dataset in ['ace0_small']: # data_file = os.path.join(args.data_dir, '{}.txt'.format(args.dataset)) # seq_len, vocab_size, word_index_dict, index_word_dict = text_precess(data_file) seq_len = config['seq_len'] vocab_size = config['vocab_size'] # # print('seq_len: %d, vocab_size: %d' % (seq_len, vocab_size)) # oracle_loader = RealDataLoader(args.batch_size, args.seq_len) generator = models.get_generator(args.g_architecture, vocab_size=config['vocab_size'], batch_size=args.batch_size, seq_len=config['seq_len'], gen_emb_dim=args.gen_emb_dim, mem_slots=args.mem_slots, head_size=args.head_size, num_heads=args.num_heads, hidden_dim=args.hidden_dim, start_token=args.start_token) discriminator = models.get_discriminator( args.d_architecture, batch_size=args.batch_size, seq_len=config['seq_len'], vocab_size=config['vocab_size'], dis_emb_dim=args.dis_emb_dim, num_rep=args.num_rep, sn=args.sn) # print("gen params = ", count_params(generator.trainable_variables)) # print("disc params = ", count_params(discriminator.trainable_variables)) # sys.stdout.flush() load_model = False if config['load_saved_model'] != "": log_dir_path = os.path.dirname(config['load_saved_model']) config['log_dir'] = log_dir_path config['sample_dir'] = os.path.join( os.path.split(log_dir_path)[0], 'samples') index_word_dict = load_index_to_word_dict( os.path.join(config['log_dir'], "index_to_word_dict.json")) word_index_dict = {v: k for k, v in index_word_dict.items()} load_model = True else: if not os.path.exists(config['log_dir']): os.makedirs(config['log_dir']) # json.dump(index_word_dict, open(os.path.join(config['log_dir'], "index_to_word_dict.json"), 'w')) # json.dump(word_index_dict, open(os.path.join(config['log_dir'], "word_to_index_dict.json"), 'w')) pp.pprint(config) print('seq_len: %d, vocab_size: %d' % (seq_len, vocab_size)) sys.stdout.flush() real_train_traj(generator, discriminator, None, config, None, None, load_model=load_model) # if args.dataset == "emnlp_news" or args.dataset == "emnlp_news_small": # call(["python", 'bleu_post_training_emnlp.py', os.path.join(os.path.split(config['log_dir'])[0], 'samples'), 'na'], cwd=".") # elif args.dataset == "image_coco": # call(["python", 'bleu_post_training.py', os.path.join(os.path.split(config['log_dir'])[0], 'samples'), 'na'], cwd=".") else: raise NotImplementedError('{}: unknown dataset!'.format(args.dataset))