Example #1
0
    def __init__(self, model, batch_size, loss, goal, distance_metric,
                 session):
        ''' Initialize FGSM.

        :param model: The model to attack. A `realsafe.model.Classifier` instance.
        :param batch_size: Batch size for the `batch_attack()` method.
        :param loss: The loss function to optimize. A `realsafe.loss.Loss` instance.
        :param goal: Adversarial goals. All supported values are 't', 'tm', and 'ut'.
        :param distance_metric: Adversarial distance metric. All supported values are 'l_2' and 'l_inf'.
        :param session: The `tf.Session` to run the attack in. The `model` should be loaded into this session.
        '''
        self.model, self.batch_size, self._session = model, batch_size, session
        self.loss, self.goal, self.distance_metric = loss, goal, distance_metric
        # placeholder for batch_attack's input
        self.xs_ph = get_xs_ph(model, batch_size)
        self.ys_ph = get_ys_ph(model, batch_size)
        # magnitude
        self.eps_ph = tf.placeholder(self.model.x_dtype, (self.batch_size, ))
        self.eps_var = tf.Variable(
            tf.zeros((self.batch_size, ), dtype=self.model.x_dtype))
        # calculate loss' gradient with relate to the input
        grad = tf.gradients(self.loss(self.xs_ph, self.ys_ph), self.xs_ph)[0]
        if goal == 't' or goal == 'tm':
            grad = -grad
        elif goal != 'ut':
            raise NotImplementedError
        # flatten the gradient for easier broadcast operations
        grad_flatten = tf.reshape(grad, (batch_size, -1))
        # calculate update
        if distance_metric == 'l_2':
            grad_unit = get_unit(grad_flatten)
            update = tf.expand_dims(self.eps_var, 1) * grad_unit
        elif distance_metric == 'l_inf':
            update = tf.expand_dims(self.eps_var, 1) * tf.sign(grad_flatten)
        else:
            raise NotImplementedError
        update = tf.reshape(update, (self.batch_size, *self.model.x_shape))
        # clip by (x_min, x_max)
        self.xs_adv = tf.clip_by_value(self.xs_ph + update, self.model.x_min,
                                       self.model.x_max)

        self.config_eps_step = self.eps_var.assign(self.eps_ph)
Example #2
0
    def __init__(self, model, batch_size, loss, goal, distance_metric, session, iteration_callback=None):
        ''' Initialize BIM.

        :param model: The model to attack. A ``realsafe.model.Classifier`` instance.
        :param batch_size: Batch size for the ``batch_attack()`` method.
        :param loss: The loss function to optimize. A ``realsafe.loss.Loss`` instance.
        :param goal: Adversarial goals. All supported values are ``'t'``, ``'tm'``, and ``'ut'``.
        :param distance_metric: Adversarial distance metric. All supported values are ``'l_2'`` and ``'l_inf'``.
        :param session: The ``tf.Session`` to run the attack in. The ``model`` should be loaded into this session.
        :param iteration_callback: A function accept a ``xs`` ``tf.Tensor`` (the original examples) and a ``xs_adv``
            ``tf.Tensor`` (the adversarial examples for ``xs``). During ``batch_attack()``, this callback function would
            be runned after each iteration, and its return value would be yielded back to the caller. By default,
            ``iteration_callback`` is ``None``.
        '''
        self.model, self.batch_size, self._session = model, batch_size, session
        self.loss, self.goal, self.distance_metric = loss, goal, distance_metric
        # placeholder for batch_attack's input
        self.xs_ph = get_xs_ph(model, batch_size)
        self.ys_ph = get_ys_ph(model, batch_size)
        # flatten shape of xs_ph
        xs_flatten_shape = (batch_size, np.prod(self.model.x_shape))
        # store xs and ys in variables to reduce memory copy between tensorflow and python
        # variable for the original example with shape of (batch_size, D)
        self.xs_var = tf.Variable(tf.zeros(shape=xs_flatten_shape, dtype=self.model.x_dtype))
        # variable for labels
        self.ys_var = tf.Variable(tf.zeros(shape=(batch_size,), dtype=self.model.y_dtype))
        # variable for the (hopefully) adversarial example with shape of (batch_size, D)
        self.xs_adv_var = tf.Variable(tf.zeros(shape=xs_flatten_shape, dtype=self.model.x_dtype))
        # magnitude
        self.eps_ph = tf.placeholder(self.model.x_dtype, (self.batch_size,))
        self.eps_var = tf.Variable(tf.zeros((self.batch_size,), dtype=self.model.x_dtype))
        # step size
        self.alpha_ph = tf.placeholder(self.model.x_dtype, (self.batch_size,))
        self.alpha_var = tf.Variable(tf.zeros((self.batch_size,), dtype=self.model.x_dtype))
        # expand dim for easier broadcast operations
        eps = tf.expand_dims(self.eps_var, 1)
        alpha = tf.expand_dims(self.alpha_var, 1)
        # calculate loss' gradient with relate to the adversarial example
        # grad.shape == (batch_size, D)
        self.xs_adv_model = tf.reshape(self.xs_adv_var, (batch_size, *self.model.x_shape))
        self.loss = loss(self.xs_adv_model, self.ys_var)
        grad = tf.gradients(self.loss, self.xs_adv_var)[0]
        if goal == 't' or goal == 'tm':
            grad = -grad
        elif goal != 'ut':
            raise NotImplementedError
        # update the adversarial example
        if distance_metric == 'l_2':
            grad_unit = get_unit(grad)
            xs_adv_delta = self.xs_adv_var - self.xs_var + alpha * grad_unit
            # clip by max l_2 magnitude of adversarial noise
            xs_adv_next = self.xs_var + tf.clip_by_norm(xs_adv_delta, eps, axes=[1])
        elif distance_metric == 'l_inf':
            xs_lo, xs_hi = self.xs_var - eps, self.xs_var + eps
            grad_sign = tf.sign(grad)
            # clip by max l_inf magnitude of adversarial noise
            xs_adv_next = tf.clip_by_value(self.xs_adv_var + alpha * grad_sign, xs_lo, xs_hi)
        else:
            raise NotImplementedError
        # clip by (x_min, x_max)
        xs_adv_next = tf.clip_by_value(xs_adv_next, self.model.x_min, self.model.x_max)

        self.update_xs_adv_step = self.xs_adv_var.assign(xs_adv_next)
        self.config_eps_step = self.eps_var.assign(self.eps_ph)
        self.config_alpha_step = self.alpha_var.assign(self.alpha_ph)
        self.setup_xs = [self.xs_var.assign(tf.reshape(self.xs_ph, xs_flatten_shape)),
                         self.xs_adv_var.assign(tf.reshape(self.xs_ph, xs_flatten_shape))]
        self.setup_ys = self.ys_var.assign(self.ys_ph)
        self.iteration = None

        self.iteration_callback = None
        if iteration_callback is not None:
            xs_model = tf.reshape(self.xs_var, (self.batch_size, *self.model.x_shape))
            self.iteration_callback = iteration_callback(xs_model, self.xs_adv_model)