met_value_converter = calorie_estimation.METValueMLPConverter() checkpoint = engine.load_weights('resources/calorie_estimation/mobilenet_features_met_converter.ckpt') met_value_converter.load_state_dict(checkpoint) met_value_converter.eval() # Concatenate feature extractor and met converter net = Pipe(feature_extractor, met_value_converter) # Create inference engine, video streaming and display objects inference_engine = engine.InferenceEngine(net, use_gpu=use_gpu) video_source = camera.VideoSource(camera_id=camera_id, size=inference_engine.expected_frame_size, filename=path_in) framegrabber = camera.VideoStream(video_source, inference_engine.fps) post_processors = [ calorie_estimation.CalorieAccumulator(weight=weight, height=height, age=age, gender=gender, smoothing=12) ] display_ops = [ realtimenet.display.DisplayDetailedMETandCalories(), ] display_results = realtimenet.display.DisplayResults(title=title, display_ops=display_ops) # Run live inference
num_out=30) checkpoint = engine.load_weights('resources/gesture_detection/efficientnet_logistic_regression.ckpt') gesture_classifier.load_state_dict(checkpoint) gesture_classifier.eval() # Concatenate feature extractor and met converter net = Pipe(feature_extractor, gesture_classifier) # Create inference engine, video streaming and display instances inference_engine = engine.InferenceEngine(net, use_gpu=use_gpu) video_source = camera.VideoSource(camera_id=camera_id, size=inference_engine.expected_frame_size, filename=path_in) video_stream = camera.VideoStream(video_source, inference_engine.fps) postprocessor = [ PostprocessClassificationOutput(INT2LAB, smoothing=4) ] display_ops = [ realtimenet.display.DisplayTopKClassificationOutputs(top_k=1, threshold=0.5), ] display_results = realtimenet.display.DisplayResults(title=title, display_ops=display_ops) engine.run_inference_engine(inference_engine, video_stream, postprocessor, display_results, path_out)
def _setup_inference_engine(self): self.inference_engine = engine.InferenceEngine(self.net, use_gpu=True) video_source = camera.VideoSource( camera_id=0, size=self.inference_engine.expected_frame_size) self.frame_grabber = camera.VideoStream(video_source, self.inference_engine.fps)