###### Set global Theano config ####### import os t_flags = "mode=FAST_RUN,device=cpu,floatX=float32, optimizer='fast_run', allow_gc=False" print("Theano Flags: " + t_flags) os.environ["THEANO_FLAGS"] = t_flags ###### Imports ###### import numpy as np import time from past.builtins import xrange import recnet from .util import edit_distance ### 1. Step: Create new model rn = recnet.rnnModel() ### 2. Step: Define parameters rn.parameter["train_data_name"] = "numbers_image_train.klepto" rn.parameter["valid_data_name"] = "numbers_image_valid.klepto" rn.parameter["data_location"] = "data_set/" rn.parameter["batch_size"] = 1 rn.parameter["net_size"] = [9, 10, 10 + 1] rn.parameter["net_unit_type"] = ['input', 'conv', 'softmax'] rn.parameter["net_act_type"] = ['-', 'tanh', '-'] rn.parameter["net_arch"] = ['-', 'bi', 'ff'] rn.parameter["random_seed"] = 211 rn.parameter["epochs"] = 30 rn.parameter["learn_rate"] = 0.001
###### Set global Theano config ####### import os t_flags = "mode=FAST_RUN,device=cpu,floatX=float32, optimizer='fast_run', allow_gc=False" print("Theano Flags: " + t_flags) os.environ["THEANO_FLAGS"] = t_flags ###### Imports ###### import numpy as np import time from past.builtins import xrange import recnet from .util import edit_distance ### 1. Step: Create new model rn = recnet.rnnModel() ### 2. Step: Define parameters rn.parameter["train_data_name"] = "numbers_image_train.klepto" rn.parameter["valid_data_name"] = "numbers_image_valid.klepto" rn.parameter["data_location" ] = "data_set/" rn.parameter["batch_size" ] = 1 rn.parameter["net_size" ] = [ 9, 10, 10+1] rn.parameter["net_unit_type" ] = ['input', 'conv', 'softmax'] rn.parameter["net_act_type" ] = [ '-', 'tanh', '-'] rn.parameter["net_arch" ] = [ '-', 'bi', 'ff'] rn.parameter["random_seed" ] = 211 rn.parameter["epochs" ] = 30 rn.parameter["learn_rate" ] = 0.001