def classifyZipcode(location_text): classifier = recognition_heuristic.naivebayes(recognition_heuristic.getwords) classifier.setdb('test_100.db') classified_zipcode = classifier.classify(location_text) zipcode = str(classified_zipcode[0]) confidence = str(classfied_zipcode[1]) #query MYSQL database and append to python list cur = db.cursor() cur.execute("SELECT latitude,longitude FROM sqlbook.zipcounty WHERE zipcode = %s", zipcode) rows = cur.fetchall() latitude = rows[0][0] longitude = rows[0][1] likely_zipcode = {"location_text": location_text, "zipcode": zipcode, "latitude": latitude, "longitude": longitude} weather = get__weather_data.getWeather(likely_zipcode['zipcode']) likely_zipcode.update(weather) return likely_zipcode
# Licence: <your licence> #------------------------------------------------------------------------------- #!/usr/bin/env python import recognition_heuristic import MySQLdb import string def main(): pass #Step 1: classify objects in some text with a likely location code #use on unstructured text classifier = recognition_heuristic.naivebayes(recognition_heuristic.getwords) #use this function if given a dictionary or key/value structured storage of text ##classifier = recognition_heuristic.naivebayes(wordmatrixfeatures) #Step 2: Set the database to store the training. Set the region to train classifier.setdb('likely_zipcode.db') state = 'CA' #Step 3: Train the text with a location code #initial test training already carried out ##recognition_heuristic.frequency_train(classifier) ##recognition_heuristic.impact_train(classifier)