def test_FriendSuggestion_have_direction(self):
     train_uu = matrix2dataframe(train_mat_yes)
     train_ui = raw2std(train_user_item)
     result = RecommendSocial(train_uu, train_ui, N=4)
     print(result)
     self.assertEqual(result["user1"][0], 7)
     self.assertEqual(result["user9"][3], 7)
Example #2
0
 def test_recommend_cold_start(self):
     train = raw2std(train1)
     cold_start_items = []
     for i in train.index:
         if train.ix[i].any() == 0:
             cold_start_items.append(i)
     result = RecommendRandom(cold_start_items, 3)
     self.assertEqual(len(result), 3)
     self.assertGreater(result[1], 4)
 def test_PersonalRank(self):
     train = {
         #         1  2  3  4  5  6  7  8  9  10
         "user1": [1, 1, 1, 1, 0, 0, 1, 0, 0, 1],
         "user2": [1, 0, 0, 0, 1, 0, 1, 0, 1, 1],
         "user3": [0, 1, 1, 1, 0, 1, 0, 0, 0, 0],
         "user4": [0, 1, 1, 0, 1, 0, 1, 0, 1, 0],
         "user5": [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]
     }
     std_index = [
         "item1", "item2", "item3", "item4", "item5", "item6", "item7",
         "item8", "item9", "item10"
     ]
     train = raw2std(train, index=std_index)
     rank = PersonalRank(train, p=0.8, repeat_times=10000)
     self.assertAlmostEqual(rank["user1"]["item1"], 0)
     #注意,随机游走算法的结果会变化,但是随着训练次数的增多,理论上应该不会错
     self.assertGreater(rank["user1"]["item5"], 0.4)
     recommend = FilterAndSort(train, rank)
     self.assertEqual(recommend["user1"][0], "item5")
    "user2": ["item1", "item4", "item5"],
    "user3": ["item2", "item6", "item7"],
    "user4": ["item3", "item4", "item6"],
    "user5": ["item5", "item6", "item7"]
}

raw_data2 = {
    "user1": [1, 1, 1, 0, 0, 0, 0],
    "user2": [1, 0, 0, 1, 1, 0, 0],
    "user3": [0, 1, 0, 0, 0, 1, 1],
    "user4": [0, 0, 1, 1, 0, 1, 0],
    "user5": [0, 0, 0, 0, 1, 1, 1]
}
std_index = ["item1", "item2", "item3", "item4", "item5", "item6", "item7"]

std_data = raw2std(raw_data2, index=std_index)
'''
class SimilarityTest(unittest.TestCase):

    def test_usersimilarity(self):
        train = std_data
        similarity = UserSimilarityCF(train)
        self.assertEqual(similarity["user1"]["user5"], 0)
        self.assertAlmostEqual(similarity["user1"]["user2"], 0.3333333)

    def test_usersimilarity_down_hot(self):
        train = {
            #         1  2  3  4  5  6  7  8  9  10
            "user1": [1, 1, 1, 1, 0, 0, 1, 0, 0, 1],
            "user2": [1, 0, 0, 0, 1, 0, 1, 0, 1, 1],
            "user3": [0, 1, 1, 1, 0, 1, 0, 0, 0, 0],
 def test_FriendSuggestion_no_direction(self):
     train_uu = graph2dataframe(raw_data_no)
     train_ui = raw2std(train_user_item)
     result = RecommendSocial(train_uu, train_ui, N=4)
     self.assertEqual(result["user1"][0], 7)
     self.assertEqual(result["user9"][3], 7)
Example #6
0
 def test_most_hot(self):
     train = raw2std(train1)
     result = RecommendMostHotEver(train)
     self.assertEqual(result[0], 1)