def _reconstruct_similarity(self, post_normalize=True, force=True): if not self.get_matrix_similarity() or force: self._matrix_similarity = SimilarityMatrix() self._matrix_similarity.create(self._U, self._S, post_normalize=post_normalize) return self._matrix_similarity
def __init__(self, filename=None): #Call parent constructor super(SVD, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename) # Row and Col ids. Only when importing from SVDLIBC self._file_row_ids = None self._file_col_ids = None #Update feature self._foldinZeroes = {} self.inv_S = None #since it doesn't get updated so redundent to calculate each time
def __init__(self, filename=None): #Call parent constructor super(SVD, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename)
class SVD(Algorithm): """ Inherits from base class Algorithm. It computes SVD (Singular Value Decomposition) on a matrix *M* It also provides recommendations and predictions using the reconstructed matrix *M'* :param filename: Path to a Zip file, containing an already computed SVD (U, Sigma, and V) for a matrix *M* :type filename: string """ def __init__(self, filename=None): #Call parent constructor super(SVD, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename) # Row and Col ids. Only when importing from SVDLIBC self._file_row_ids = None self._file_col_ids = None def __repr__(self): try: s = '\n'.join(('M\':' + str(self._reconstruct_matrix()), \ 'A row (U):' + str(self._reconstruct_matrix().right[1]), \ 'A col (V):' + str(self._reconstruct_matrix().left[1]))) except TypeError: s = self._data.__repr__() return s def load_model(self, filename): """ Loads SVD transformation (U, Sigma and V matrices) from a ZIP file :param filename: path to the SVD matrix transformation (a ZIP file) :type filename: string """ try: zip = zipfile.ZipFile(filename, allowZip64=True) except: zip = zipfile.ZipFile(filename + '.zip', allowZip64=True) # Options file options = dict() for line in zip.open('README'): data = line.strip().split('\t') options[data[0]] = data[1] try: k = int(options['k']) except: k = 100 #TODO: nasty!!! # Load U, S, and V """ #Python 2.6 only: #self._U = loads(zip.open('.U').read()) #self._S = loads(zip.open('.S').read()) #self._V = loads(zip.open('.V').read()) """ try: self._U = loads(zip.read('.U')) except: matrix = fromfile(zip.extract('.U', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k*i:k*(i+1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.row_ids').split('\n') if idx] except: idx = [ idx.strip() for idx in zip.read('.row_ids').split('\n') if idx] #self._U = DenseMatrix(vectors) self._U = DenseMatrix(vectors, OrderedSet(idx), None) try: self._V = loads(zip.read('.V')) except: matrix = fromfile(zip.extract('.V', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k*i:k*(i+1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.col_ids').split('\n') if idx] except: idx = [ idx.strip() for idx in zip.read('.col_ids').split('\n') if idx] #self._V = DenseMatrix(vectors) self._V = DenseMatrix(vectors, OrderedSet(idx), None) self._S = loads(zip.read('.S')) # Shifts for Mean Centerer Matrix self._shifts = None if '.shifts.row' in zip.namelist(): self._shifts = [loads(zip.read('.shifts.row')), loads(zip.read('.shifts.col')), loads(zip.read('.shifts.total')) ] self._reconstruct_matrix(shifts=self._shifts, force=True) self._reconstruct_similarity(force=True) def save_model(self, filename, options={}): """ Saves SVD transformation (U, Sigma and V matrices) to a ZIP file :param filename: path to save the SVD matrix transformation (U, Sigma and V matrices) :type filename: string :param options: a dict() containing the info about the SVD transformation. E.g. {'k': 100, 'min_values': 5, 'pre_normalize': None, 'mean_center': True, 'post_normalize': True} :type options: dict """ if VERBOSE: sys.stdout.write('Saving svd model to %s\n' % filename) f_opt = open(filename + '.config', 'w') for option, value in options.items(): f_opt.write('\t'.join((option, str(value))) + '\n') f_opt.close() # U, S, and V MAX_VECTORS = 2**21 if len(self._U) < MAX_VECTORS: self._U.dump(filename + '.U') else: self._U.tofile(filename + '.U') if len(self._V) < MAX_VECTORS: self._V.dump(filename + '.V') else: self._V.tofile(filename + '.V') self._S.dump(filename + '.S') # Shifts for Mean Centered Matrix if self._shifts: #(row_shift, col_shift, total_shift) self._shifts[0].dump(filename + '.shifts.row') self._shifts[1].dump(filename + '.shifts.col') self._shifts[2].dump(filename + '.shifts.total') zip = filename if not filename.endswith('.zip') and not filename.endswith('.ZIP'): zip += '.zip' fp = zipfile.ZipFile(zip, 'w', allowZip64=True) # Store Options in the ZIP file fp.write(filename=filename + '.config', arcname='README') os.remove(filename + '.config') # Store matrices in the ZIP file for extension in ['.U', '.S', '.V']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store mean center shifts in the ZIP file if self._shifts: for extension in ['.shifts.row', '.shifts.col', '.shifts.total']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store row and col ids file, if importing from SVDLIBC if self._file_row_ids: fp.write(filename=self._file_row_ids, arcname='.row_ids') if self._file_col_ids: fp.write(filename=self._file_col_ids, arcname='.col_ids') def _reconstruct_similarity(self, post_normalize=True, force=True): if not self.get_matrix_similarity() or force: self._matrix_similarity = SimilarityMatrix() self._matrix_similarity.create(self._U, self._S, post_normalize=post_normalize) return self._matrix_similarity def _reconstruct_matrix(self, shifts=None, force=True): if not self._matrix_reconstructed or force: if shifts: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V, shifts=shifts) else: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V) return self._matrix_reconstructed def compute(self, k=100, min_values=None, pre_normalize=None, mean_center=False, post_normalize=True, savefile=None): """ Computes SVD on matrix *M*, :math:`M = U \Sigma V^T` :param k: number of dimensions :type k: int :param min_values: min. number of non-zeros (or non-empty values) any row or col must have :type min_values: int :param pre_normalize: normalize input matrix. Possible values are tfidf, rows, cols, all. :type pre_normalize: string :param mean_center: centering the input matrix (aka mean substraction) :type mean_center: Boolean :param post_normalize: Normalize every row of :math:`U \Sigma` to be a unit vector. Thus, row similarity (using cosine distance) returns :math:`[-1.0 .. 1.0]` :type post_normalize: Boolean :param savefile: path to save the SVD factorization (U, Sigma and V matrices) :type savefile: string """ super(SVD, self).compute(min_values) if VERBOSE: sys.stdout.write('Computing svd k=%s, min_values=%s, pre_normalize=%s, mean_center=%s, post_normalize=%s\n' % (k, min_values, pre_normalize, mean_center, post_normalize)) if not min_values: sys.stdout.write('[WARNING] min_values is set to None, meaning that some funky recommendations might appear!\n') # Get SparseMatrix matrix = self._matrix.get() # Mean center? shifts, row_shift, col_shift, total_shift = (None, None, None, None) if mean_center: if VERBOSE: sys.stdout.write("[WARNING] mean_center is True. svd.similar(...) might return nan's. If so, then do svd.compute(..., mean_center=False)\n") matrix, row_shift, col_shift, total_shift = matrix.mean_center() self._shifts = (row_shift, col_shift, total_shift) # Pre-normalize input matrix? if pre_normalize: """ Divisi2 divides each entry by the geometric mean of its row norm and its column norm. The rows and columns don't actually become unit vectors, but they all become closer to unit vectors. """ if pre_normalize == 'tfidf': matrix = matrix.normalize_tfidf() #TODO By default, treats the matrix as terms-by-documents; # pass cols_are_terms=True if the matrix is instead documents-by-terms. elif pre_normalize == 'rows': matrix = matrix.normalize_rows() elif pre_normalize == 'cols': matrix = matrix.normalize_cols() elif pre_normalize == 'all': matrix = matrix.normalize_all() else: raise ValueError("Pre-normalize option (%s) is not correct.\n \ Possible values are: 'tfidf', 'rows', 'cols' or 'all'" % pre_normalize) #Compute SVD(M, k) self._U, self._S, self._V = matrix.svd(k) # Sim. matrix = U \Sigma^2 U^T self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if savefile: options = {'k': k, 'min_values': min_values, 'pre_normalize': pre_normalize, 'mean_center': mean_center, 'post_normalize': post_normalize} self.save_model(savefile, options) def _get_row_reconstructed(self, i, zeros=None): if zeros: return self._matrix_reconstructed.row_named(i)[zeros] return self._matrix_reconstructed.row_named(i) def _get_col_reconstructed(self, j, zeros=None): if zeros: return self._matrix_reconstructed.col_named(j)[zeros] return self._matrix_reconstructed.col_named(j) def predict(self, i, j, MIN_VALUE=None, MAX_VALUE=None): """ Predicts the value of :math:`M_{i,j}`, using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` :param i: row in M, :math:`M_{i \cdot}` :type i: user or item id :param j: col in M, :math:`M_{\cdot j}` :type j: item or user id :param MIN_VALUE: min. value in M (e.g. in ratings[1..5] => 1) :type MIN_VALUE: float :param MAX_VALUE: max. value in M (e.g. in ratings[1..5] => 5) :type MAX_VALUE: float """ if not self._matrix_reconstructed: self.compute() #will use default values! predicted_value = self._matrix_reconstructed.entry_named(i, j) #M' = U S V^t if MIN_VALUE: predicted_value = max(predicted_value, MIN_VALUE) if MAX_VALUE: predicted_value = min(predicted_value, MAX_VALUE) return float(predicted_value) def recommend(self, i, n=10, only_unknowns=False, is_row=True): """ Recommends items to a user (or users to an item) using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` E.g. if *i* is a row and *only_unknowns* is True, it returns the higher values of :math:`M^\prime_{i,\cdot}` :math:`\\forall_j{M_{i,j}=\emptyset}` :param i: row or col in M :type i: user or item id :param n: number of recommendations to return :type n: int :param only_unknowns: only return unknown values in *M*? (e.g. items not rated by the user) :type only_unknowns: Boolean :param is_row: is param *i* a row (or a col)? :type is_row: Boolean """ if not self._matrix_reconstructed: self.compute() #will use default values! item = None zeros = [] if only_unknowns and not self._matrix.get(): raise ValueError("Matrix is empty! If you loaded an SVD model you can't use only_unknowns=True, unless svd.create_matrix() is called") if is_row: if only_unknowns: zeros = self._matrix.get().row_named(i).zero_entries() item = self._get_row_reconstructed(i, zeros) else: if only_unknowns: zeros = self._matrix.get().col_named(i).zero_entries() item = self._get_col_reconstructed(i, zeros) return item.top_items(n) def centroid(self, ids, is_row=True): points = [] for id in ids: if is_row: point = self._U.row_named(id) else: point = self._V.row_named(id) points.append(point) M = divisi2.SparseMatrix(points) return M.col_op(sum)/len(points) #TODO Numpy.sum? def kmeans(self, ids, k=5, components=3, are_rows=True): """ K-means clustering. It uses k-means++ (http://en.wikipedia.org/wiki/K-means%2B%2B) to choose the initial centroids of the clusters Clusterizes a list of IDs (either row or cols) :param ids: list of row (or col) ids to cluster :param k: number of clusters :param components: how many eigen values use (from SVD) :param are_rows: is param *ids* a list of rows (or cols)? :type are_rows: Boolean """ if not isinstance(ids, list): # Cluster the whole row(or col) values. It's slow! return super(SVD, self).kmeans(ids, k=k, is_row=are_rows) if VERBOSE: sys.stdout.write('Computing k-means, k=%s for ids %s\n' % (k, ids)) MAX_POINTS = 150 points = [] for id in ids: if are_rows: points.append(self._U.row_named(id)[:components]) else: points.append(self._V.row_named(id)[:components]) M = array(points) # Only apply Matrix initialization if num. points is not that big! if len(points) <= MAX_POINTS: centers = self._kinit(array(points), k) centroids, labels = kmeans2(M, centers, minit='matrix') else: centroids, labels = kmeans2(M, k, minit='random') i = 0 clusters = dict() for cluster in labels: if not clusters.has_key(cluster): clusters[cluster] = dict() clusters[cluster]['centroid'] = centroids[cluster] clusters[cluster]['points'] = [] point = self._U.row_named(ids[i])[:components] centroid = clusters[cluster]['centroid'] to_centroid = self._cosine(centroid, point) clusters[cluster]['points'].append((ids[i], to_centroid)) clusters[cluster]['points'].sort(key=itemgetter(1), reverse=True) i += 1 return clusters '''
class Baseline(Algorithm): def __init__(self, filename=None): #Call parent constructor super(Baseline, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename) # Row and Col ids. Only when importing from SVDLIBC self._file_row_ids = None self._file_col_ids = None def __repr__(self): try: s = '\n'.join(('M\':' + str(self._reconstruct_matrix()), \ 'A row (U):' + str(self._reconstruct_matrix().right[1]), \ 'A col (V):' + str(self._reconstruct_matrix().left[1]))) except TypeError: s = self._data.__repr__() return s def load_model(self, filename): """ Loads SVD transformation (U, Sigma and V matrices) from a ZIP file :param filename: path to the SVD matrix transformation (a ZIP file) :type filename: string """ try: zip = zipfile.ZipFile(filename, allowZip64=True) except: zip = zipfile.ZipFile(filename + '.zip', allowZip64=True) # Options file options = dict() for line in zip.open('README'): data = line.strip().split('\t') options[data[0]] = data[1] try: k = int(options['k']) except: k = 100 #TODO: nasty!!! # Load U, S, and V """ #Python 2.6 only: #self._U = loads(zip.open('.U').read()) #self._S = loads(zip.open('.S').read()) #self._V = loads(zip.open('.V').read()) """ try: self._U = loads(zip.read('.U')) except: matrix = fromfile(zip.extract('.U', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k*i:k*(i+1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.row_ids').split('\n') if idx] except: idx = [ idx.strip() for idx in zip.read('.row_ids').split('\n') if idx] #self._U = DenseMatrix(vectors) self._U = DenseMatrix(vectors, OrderedSet(idx), None) try: self._V = loads(zip.read('.V')) except: matrix = fromfile(zip.extract('.V', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k*i:k*(i+1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.col_ids').split('\n') if idx] except: idx = [ idx.strip() for idx in zip.read('.col_ids').split('\n') if idx] #self._V = DenseMatrix(vectors) self._V = DenseMatrix(vectors, OrderedSet(idx), None) self._S = loads(zip.read('.S')) # Shifts for Mean Centerer Matrix self._shifts = None if '.shifts.row' in zip.namelist(): self._shifts = [loads(zip.read('.shifts.row')), loads(zip.read('.shifts.col')), loads(zip.read('.shifts.total')) ] self._reconstruct_matrix(shifts=self._shifts, force=True) self._reconstruct_similarity(force=True) def save_model(self, filename, options={}): """ Saves SVD transformation (U, Sigma and V matrices) to a ZIP file :param filename: path to save the SVD matrix transformation (U, Sigma and V matrices) :type filename: string :param options: a dict() containing the info about the SVD transformation. E.g. {'k': 100, 'min_values': 5, 'pre_normalize': None, 'mean_center': True, 'post_normalize': True} :type options: dict """ if VERBOSE: sys.stdout.write('Saving svd model to %s\n' % filename) f_opt = open(filename + '.config', 'w') for option, value in options.items(): f_opt.write('\t'.join((option, str(value))) + '\n') f_opt.close() # U, S, and V MAX_VECTORS = 2**21 if len(self._U) < MAX_VECTORS: self._U.dump(filename + '.U') else: self._U.tofile(filename + '.U') if len(self._V) < MAX_VECTORS: self._V.dump(filename + '.V') else: self._V.tofile(filename + '.V') self._S.dump(filename + '.S') # Shifts for Mean Centered Matrix if self._shifts: #(row_shift, col_shift, total_shift) self._shifts[0].dump(filename + '.shifts.row') self._shifts[1].dump(filename + '.shifts.col') self._shifts[2].dump(filename + '.shifts.total') zip = filename if not filename.endswith('.zip') and not filename.endswith('.ZIP'): zip += '.zip' fp = zipfile.ZipFile(zip, 'w', allowZip64=True) # Store Options in the ZIP file fp.write(filename=filename + '.config', arcname='README') os.remove(filename + '.config') # Store matrices in the ZIP file for extension in ['.U', '.S', '.V']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store mean center shifts in the ZIP file if self._shifts: for extension in ['.shifts.row', '.shifts.col', '.shifts.total']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store row and col ids file, if importing from SVDLIBC if self._file_row_ids: fp.write(filename=self._file_row_ids, arcname='.row_ids') if self._file_col_ids: fp.write(filename=self._file_col_ids, arcname='.col_ids') def _reconstruct_similarity(self, post_normalize=True, force=True): if not self.get_matrix_similarity() or force: self._matrix_similarity = SimilarityMatrix() self._matrix_similarity.create(self._U, self._S, post_normalize=post_normalize) return self._matrix_similarity def _reconstruct_matrix(self, shifts=None, force=True): if not self._matrix_reconstructed or force: if shifts: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V, shifts=shifts) else: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V, shifts) return self._matrix_reconstructed def _get_row_reconstructed(self, i, zeros=None): if zeros: return self._matrix_reconstructed.row_named(i)[zeros] return self._matrix_reconstructed.row_named(i) def _get_col_reconstructed(self, j, zeros=None): if zeros: return self._matrix_reconstructed.col_named(j)[zeros] return self._matrix_reconstructed.col_named(j) def compute(self, i, k=100, min_values=None, pre_normalize=None, mean_center=False, post_normalize=True, savefile=None, v_vectors=None, col_labels=None): self._V = DenseMatrix(v_vectors, col_labels) # Sim. matrix = U \Sigma^2 U^T #self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if savefile: options = {'k': k, 'min_values': min_values, 'pre_normalize': pre_normalize, 'mean_center': mean_center,'post_normalize': post_normalize} self.save_model(savefile, options) def recommend(self, i, n=10, only_unknowns=False, is_row=True, save=False, v_vectors=None,sparse_matrix_vector=None, col_labels=None): db = DBConn() self.compute(i, k=100, min_values=None, pre_normalize=None, mean_center=False, post_normalize=True,savefile=save, v_vectors=v_vectors, col_labels=col_labels) #will use default values! item = None zeros = [] if is_row: if only_unknowns: zeros = self._matrix.get().row_named(i).zero_entries() item = self._get_row_reconstructed(i, zeros) else: if only_unknowns: zeros = [] soundcloud_artists = db.get_soundcloud_labels() for artist in soundcloud_artists: if not artist["index"] in sparse_matrix_vector: zeros.append(artist["index"]) item = self._get_col_reconstructed(0, zeros) return item.top_items(n)
class SVD(Algorithm): """ Inherits from base class Algorithm. It computes SVD (Singular Value Decomposition) on a matrix *M* It also provides recommendations and predictions using the reconstructed matrix *M'* :param filename: Path to a Zip file, containing an already computed SVD (U, Sigma, and V) for a matrix *M* :type filename: string """ def __init__(self, filename=None): #Call parent constructor super(SVD, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename) # Row and Col ids. Only when importing from SVDLIBC self._file_row_ids = None self._file_col_ids = None #Update feature self._foldinZeroes = {} self.inv_S = None #since it doesn't get updated so redundent to calculate each time def __repr__(self): try: s = '\n'.join(('M\':' + str(self._reconstruct_matrix()), \ 'A row (U):' + str(self._reconstruct_matrix().right[1]), \ 'A col (V):' + str(self._reconstruct_matrix().left[1]))) except TypeError: s = self._data.__repr__() return s def load_model(self, filename): """ Loads SVD transformation (U, Sigma and V matrices) from a ZIP file :param filename: path to the SVD matrix transformation (a ZIP file) :type filename: string """ try: zip = zipfile.ZipFile(filename, allowZip64=True) except: zip = zipfile.ZipFile(filename + '.zip', allowZip64=True) # Options file options = dict() for line in zip.open('README'): data = line.strip().split('\t') options[data[0]] = data[1] try: k = int(options['k']) except: k = 100 #TODO: nasty!!! # Load U, S, and V """ #Python 2.6 only: #self._U = loads(zip.open('.U').read()) #self._S = loads(zip.open('.S').read()) #self._V = loads(zip.open('.V').read()) """ try: self._U = loads(zip.read('.U')) except: matrix = fromfile(zip.extract('.U', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k * i:k * (i + 1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.row_ids').split('\n') if idx ] except: idx = [ idx.strip() for idx in zip.read('.row_ids').split('\n') if idx ] #self._U = DenseMatrix(vectors) self._U = DenseMatrix(vectors, OrderedSet(idx), None) try: self._V = loads(zip.read('.V')) except: matrix = fromfile(zip.extract('.V', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k * i:k * (i + 1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.col_ids').split('\n') if idx ] except: idx = [ idx.strip() for idx in zip.read('.col_ids').split('\n') if idx ] #self._V = DenseMatrix(vectors) self._V = DenseMatrix(vectors, OrderedSet(idx), None) self._S = loads(zip.read('.S')) # Shifts for Mean Centerer Matrix self._shifts = None if '.shifts.row' in zip.namelist(): self._shifts = [ loads(zip.read('.shifts.row')), loads(zip.read('.shifts.col')), loads(zip.read('.shifts.total')) ] self._reconstruct_matrix(shifts=self._shifts, force=True) self._reconstruct_similarity(force=True) def save_model(self, filename, options={}): """ Saves SVD transformation (U, Sigma and V matrices) to a ZIP file :param filename: path to save the SVD matrix transformation (U, Sigma and V matrices) :type filename: string :param options: a dict() containing the info about the SVD transformation. E.g. {'k': 100, 'min_values': 5, 'pre_normalize': None, 'mean_center': True, 'post_normalize': True} :type options: dict """ if VERBOSE: sys.stdout.write('Saving svd model to %s\n' % filename) f_opt = open(filename + '.config', 'w') for option, value in options.items(): f_opt.write('\t'.join((option, str(value))) + '\n') f_opt.close() # U, S, and V MAX_VECTORS = 2**21 if len(self._U) < MAX_VECTORS: self._U.dump(filename + '.U') else: self._U.tofile(filename + '.U') if len(self._V) < MAX_VECTORS: self._V.dump(filename + '.V') else: self._V.tofile(filename + '.V') self._S.dump(filename + '.S') # Shifts for Mean Centered Matrix if self._shifts: #(row_shift, col_shift, total_shift) self._shifts[0].dump(filename + '.shifts.row') self._shifts[1].dump(filename + '.shifts.col') self._shifts[2].dump(filename + '.shifts.total') zip = filename if not filename.endswith('.zip') and not filename.endswith('.ZIP'): zip += '.zip' fp = zipfile.ZipFile(zip, 'w', allowZip64=True) # Store Options in the ZIP file fp.write(filename=filename + '.config', arcname='README') os.remove(filename + '.config') # Store matrices in the ZIP file for extension in ['.U', '.S', '.V']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store mean center shifts in the ZIP file if self._shifts: for extension in ['.shifts.row', '.shifts.col', '.shifts.total']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store row and col ids file, if importing from SVDLIBC if self._file_row_ids: fp.write(filename=self._file_row_ids, arcname='.row_ids') if self._file_col_ids: fp.write(filename=self._file_col_ids, arcname='.col_ids') def _reconstruct_similarity(self, post_normalize=True, force=True): if not self.get_matrix_similarity() or force: self._matrix_similarity = SimilarityMatrix() self._matrix_similarity.create(self._U, self._S, post_normalize=post_normalize) return self._matrix_similarity def _reconstruct_matrix(self, shifts=None, force=True): if not self._matrix_reconstructed or force: if shifts: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V, shifts=shifts) else: self._matrix_reconstructed = divisi2.reconstruct( self._U, self._S, self._V) return self._matrix_reconstructed def compute(self, k=100, min_values=None, pre_normalize=None, mean_center=False, post_normalize=True, savefile=None): """ Computes SVD on matrix *M*, :math:`M = U \Sigma V^T` :param k: number of dimensions :type k: int :param min_values: min. number of non-zeros (or non-empty values) any row or col must have :type min_values: int :param pre_normalize: normalize input matrix. Possible values are tfidf, rows, cols, all. :type pre_normalize: string :param mean_center: centering the input matrix (aka mean substraction) :type mean_center: Boolean :param post_normalize: Normalize every row of :math:`U \Sigma` to be a unit vector. Thus, row similarity (using cosine distance) returns :math:`[-1.0 .. 1.0]` :type post_normalize: Boolean :param savefile: path to save the SVD factorization (U, Sigma and V matrices) :type savefile: string """ super(SVD, self).compute( min_values ) #creates matrix and does squish to not have empty values if VERBOSE: sys.stdout.write( 'Computing svd k=%s, min_values=%s, pre_normalize=%s, mean_center=%s, post_normalize=%s\n' % (k, min_values, pre_normalize, mean_center, post_normalize)) if not min_values: sys.stdout.write( '[WARNING] min_values is set to None, meaning that some funky recommendations might appear!\n' ) # Get SparseMatrix matrix = self._matrix.get() # Mean center? shifts, row_shift, col_shift, total_shift = (None, None, None, None) if mean_center: if VERBOSE: sys.stdout.write( "[WARNING] mean_center is True. svd.similar(...) might return nan's. If so, then do svd.compute(..., mean_center=False)\n" ) matrix, row_shift, col_shift, total_shift = matrix.mean_center() self._shifts = (row_shift, col_shift, total_shift) # Pre-normalize input matrix? if pre_normalize: """ Divisi2 divides each entry by the geometric mean of its row norm and its column norm. The rows and columns don't actually become unit vectors, but they all become closer to unit vectors. """ if pre_normalize == 'tfidf': matrix = matrix.normalize_tfidf( ) #TODO By default, treats the matrix as terms-by-documents; # pass cols_are_terms=True if the matrix is instead documents-by-terms. elif pre_normalize == 'rows': matrix = matrix.normalize_rows() elif pre_normalize == 'cols': matrix = matrix.normalize_cols() elif pre_normalize == 'all': matrix = matrix.normalize_all() else: raise ValueError("Pre-normalize option (%s) is not correct.\n \ Possible values are: 'tfidf', 'rows', 'cols' or 'all'" % pre_normalize) #Compute SVD(M, k) self._U, self._S, self._V = matrix.svd(k) # Sim. matrix = U \Sigma^2 U^T self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if savefile: options = { 'k': k, 'min_values': min_values, 'pre_normalize': pre_normalize, 'mean_center': mean_center, 'post_normalize': post_normalize } self.save_model(savefile, options) def _get_row_reconstructed( self, i, zeros=None ): #if foldin that means it is known what the user rated and zeros contains the rated items if zeros: return self._matrix_reconstructed.row_named(i)[zeros] return self._matrix_reconstructed.row_named(i) def _get_col_reconstructed(self, j, zeros=None): if zeros: return self._matrix_reconstructed.col_named(j)[zeros] return self._matrix_reconstructed.col_named(j) def _get_row_unrated( self, i, rated ): # use for foldin since that means users new rated items are known so no need to squish or need normal matrix sparse_matrix = self._matrix_reconstructed.row_named(i).to_sparse() # values: np array with the predicted ratings or ratings # named_rows: normal array with movie names values, named_cols = sparse_matrix.named_lists( ) #values contains a np array with predicted ratings , while named_cols contains list of labels of columns removal_indicies = [] #array of indicies for removal for item in rated: index_remove = named_cols.index(item) del named_cols[ index_remove] #since its a normal list can remove like this removal_indicies.append(index_remove) values = np.delete( values, removal_indicies ) #since it's a numpy array so must remove like this return divisiSparseVector.from_named_lists(values, named_cols).to_dense() def _get_col_unrated( self, j, rated ): # use for foldin since that means users new rated items are known so no need to squish or need normal matrix sparse_matrix = self._matrix_reconstructed.col_named(j).to_sparse() # values: np array with the predicted ratings or ratings # named_rows: normal array with movie names values, named_rows = sparse_matrix.named_lists() removal_indicies = [] for item in rated: index_remove = named_rows.index(item) del named_rows[index_remove] removal_indicies.append(index_remove) values = np.delete(values, removal_indicies) return divisiSparseVector.from_named_lists(values, named_rows).to_dense() def predict(self, i, j, MIN_VALUE=None, MAX_VALUE=None): """ Predicts the value of :math:`M_{i,j}`, using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` :param i: row in M, :math:`M_{i \cdot}` :type i: user or item id :param j: col in M, :math:`M_{\cdot j}` :type j: item or user id :param MIN_VALUE: min. value in M (e.g. in ratings[1..5] => 1) :type MIN_VALUE: float :param MAX_VALUE: max. value in M (e.g. in ratings[1..5] => 5) :type MAX_VALUE: float """ if not self._matrix_reconstructed: self.compute() #will use default values! predicted_value = self._matrix_reconstructed.entry_named( i, j) #M' = U S V^t if MIN_VALUE: predicted_value = max(predicted_value, MIN_VALUE) if MAX_VALUE: predicted_value = min(predicted_value, MAX_VALUE) return float(predicted_value) def recommend(self, i, n=10, only_unknowns=False, is_row=True): """ Recommends items to a user (or users to an item) using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` E.g. if *i* is a row and *only_unknowns* is True, it returns the higher values of :math:`M^\prime_{i,\cdot}` :math:`\\forall_j{M_{i,j}=\emptyset}` :param i: row or col in M :type i: user or item id :param n: number of recommendations to return :type n: int :param only_unknowns: only return unknown values in *M*? (e.g. items not rated by the user) :type only_unknowns: Boolean :param is_row: is param *i* a row (or a col)? :type is_row: Boolean """ if not self._matrix_reconstructed: self.compute() #will use default values! item = None zeros = [] seeDict = False if only_unknowns and not self._matrix.get() and len( self._foldinZeroes) == 0: raise ValueError( "Matrix is empty! If you loaded an SVD model you can't use only_unknowns=True, unless svd.create_matrix() is called" ) if not self._matrix.get(): seeDict = True if is_row: if only_unknowns: if seeDict: zeros = self._foldinZeroes[ i] #zeros in this instance contains the rated items if len(zeros) == 0: raise ValueError( "Matrix is empty! If you loaded an SVD model you can't use only_unknowns=True, unless svd.create_matrix() is called or youve just folded them in" ) else: item = self._get_row_unrated( i, zeros ) #removing the rated items from utility row for recommendations else: zeros = self._matrix.get().row_named(i).zero_entries() item = self._get_row_reconstructed(i, zeros) else: item = self._get_row_reconstructed(i, zeros) else: if only_unknowns: if seeDict: zeros = self._foldinZeroes[ i] #zeros in this instance contains the rated items if len(zeros) == 0: raise ValueError( "Matrix is empty! If you loaded an SVD model you can't use only_unknowns=True, unless svd.create_matrix() is called or you just folded them in" ) else: item = self._get_col_unrated( i, zeros ) #removing the rated items from utility columns for recommendations else: zeros = self._matrix.get().col_named(i).zero_entries() item = self._get_col_reconstructed(i, zeros) else: item = self._get_row_reconstructed(i, zeros) return item.top_items(n) def _calc_mean_center( self, matrix, is_row=True ): #created this to use the loaded shifts and calculate the row or column shift row_shift, col_shift, total_shift = self._shifts total_mean = total_shift # use the global shift one if is_row: row_means = matrix.row_op( np.mean) - total_mean # calculate row shift col_means = col_shift # use already given col shifts else: row_means = row_shift # use already given row shifts col_means = matrix.col_op( np.mean) - total_mean # calculate col shifts row_lengths = matrix.row_op(len) col_lengths = matrix.col_op(len) shifted = matrix.copy() for row, col in shifted.keys(): shifted[row, col] -= ( (row_means[row] * row_lengths[row] + col_means[col] * col_lengths[col]) / (row_lengths[row] + col_lengths[col])) + total_mean return (shifted, row_means, col_means, total_mean) # return shifted def load_updateDataTuple_foldin(self, filename, force=True, sep='\t', format={ 'value': 0, 'row': 1, 'col': 2 }, pickle=False, is_row=True, truncate=True, post_normalize=False): """ Folds-in a SINGLE user OR item. First loads a dataset file that contains a SINGLE tuple (a dataset for a single user OR item , has to be either same row or same column depending on is_row aka tuple) For params: filename,force,sep,format,pickle then see params definition in *datamodel.Data.load()* :param is_row: are you trying to foldin a row or a column ? yes->foldin row , no->foldin column :type is_row: boolean :param truncate: sometimes new users rate new items not in the original SVD matrix so would you like new items to be truncated or folded in ? default is foldin :type truncate: boolean :param post_normalize: Normalize every row of :math:`U \Sigma` to be a unit vector. Thus, row similarity (using cosine distance) returns :math:`[-1.0 .. 1.0]` :type post_normalize: Boolean """ if force: self._updateData = Data() self._updateData.load(filename, force, sep, format, pickle) if VERBOSE: print "reading the new tuple" if (is_row): nDimensionLabels = self._V.all_labels()[ 0] #get labels from V matrix to complete the sparse matrix print type(nDimensionLabels) print type(nDimensionLabels[0]) print len(nDimensionLabels) self._singleUpdateMatrix.create(self._updateData.get(), col_labels=nDimensionLabels, foldin=True, truncate=truncate) self._foldinZeroes[self._singleUpdateMatrix.get_rows() [0]] = self._singleUpdateMatrix.get_cols() else: nDimensionLabels = self._U.all_labels( ) #get labels from U matrix to complete the sparse matrix print nDimensionLabels self._singleUpdateMatrix.create(self._updateData.get(), row_labels=nDimensionLabels, foldin=True, truncate=truncate) self._foldinZeroes[self._singleUpdateMatrix.get_cols() [0]] = self._singleUpdateMatrix.get_rows() if not truncate: additionalElements = self._singleUpdateMatrix.get_additional_elements( ) #If it's trying to foldin a new user who has rated a new item which was not used before, then foldin the item first then foldin that user print "dimension", len(nDimensionLabels) print "additional elements:", additionalElements print "length", len(additionalElements) if len(additionalElements) != 0: for item in additionalElements: if ( is_row ): #if I am folding in a row then , the additionals added that shouldn't be are the columns to be folded in to the rows self._singleAdditionalFoldin.create( [(0, nDimensionLabels[0], item)], row_labels=self._U.all_labels()[0]) else: self._singleAdditionalFoldin.create( [(0, item, nDimensionLabels[0])], col_labels=self._V.all_labels()[0]) self._update(update_matrix=self._singleAdditionalFoldin, is_row=not is_row) # #update the data matrix if VERBOSE: print "updating the sparse matrix" if self._matrix.get(): #if matrix not there due to load ignore it self._matrix.update( self._singleUpdateMatrix ) # updating the data matrix for the zeroes , also for saving the data matrix if needed # Mean centering if self._shifts: #if not None then it means mean_center was equal true row_shift, col_shift, total_shift = self._shifts meanedMatrix, rowShift, colShift, totalShift = self._calc_mean_center( self._singleUpdateMatrix.get(), is_row=is_row) self._singleUpdateMatrix.set(meanedMatrix) if is_row: values, named_rows = row_shift.to_sparse().named_lists( ) #values numpy array, named_rows normal array valuesFold, named_rowsFold = rowShift.to_sparse().named_lists() else: values, named_rows = col_shift.to_sparse().named_lists( ) # values numpy array, named_rows normal array valuesFold, named_rowsFold = colShift.to_sparse().named_lists() values = np.concatenate((values, valuesFold)) named_rows.extend(named_rowsFold) if is_row: row_shift = divisiSparseVector.from_named_lists( values, named_rows).to_dense() else: col_shift = divisiSparseVector.from_named_lists( values, named_rows).to_dense() self._shifts = (row_shift, col_shift, total_shift) self._update(is_row=is_row, post_normalize=post_normalize) def _construct_batch_dictionary(self, data, is_row=True): """ :param data: Data() :param is_row: Boolean :return: constructs a dictionary with the row or col as the keys (depending on which is being added) with values as the tuples in self._batchDict """ key_idx = 1 #key index default is the row if not is_row: key_idx = 2 #collecting the significant col or row tuples at one place to fold them in at once for item in data: #data is a list of tuples so item is 1 tuple try: self._batchDict[item[key_idx]].append(item) except KeyError: self._batchDict[item[key_idx]] = [] self._batchDict[item[key_idx]].append(item) #batch loaded , now need to fold them in one by one print "Batch loaded successfully" def load_updateDataBatch_foldin(self, filename=None, data=None, force=True, sep='\t', format={ 'value': 0, 'row': 1, 'col': 2 }, pickle=False, is_row=True, truncate=True, post_normalize=False): """ Folds in the batch users or items, first Loads a dataset file that contains Multiple tuples (users or items) or uses the preloaded data from the datamodel/data.py object then folds them in with their ratings :param data: Contains the dataset that was loaded using the Data() class :type data: Data() For params: filename,force,sep,format,pickle then see params definition in *datamodel.Data.load()* :param is_row: are you trying to foldin a row or a column ? yes->foldin row , no->foldin column :type is_row: boolean :param truncate: sometimes new users rate new items not in the original SVD matrix so would you like new items to be truncated or folded in ? default is foldin :type truncate: boolean :param post_normalize: Normalize every row of :math:`U \Sigma` to be a unit vector. Thus, row similarity (using cosine distance) returns :math:`[-1.0 .. 1.0]` :type post_normalize: Boolean """ if force: self._updateData = Data() if filename: #not null self._updateData.load(filename, force, sep, format, pickle) #load array of tuples else: if data: self._updateData = data else: raise ValueError('No data or filename set!') print "Reading the new batch" self._construct_batch_dictionary(self._updateData.get(), is_row) print "Folding in batch entries" nDimensionLabels = None if (is_row): nDimensionLabels = self._V.all_labels()[ 0] # get labels from V matrix to complete the sparse matrix else: nDimensionLabels = self._U.all_labels()[ 0] # get labels from U matrix to complete the sparse matrix length_of_dict = len(self._batchDict) i = 0 meanDenseVector = [] isbatch = True for key_idx in self._batchDict: #data in batchDict in form {key:[(tuple)]} i += 1 if VERBOSE: if i % 100 == 0: sys.stdout.write('.') if i % 1000 == 0: sys.stdout.write('|') if i % 10000 == 0: sys.stdout.write(' (%d K user)\n' % int(i / 1000)) if (is_row): self._singleUpdateMatrix.create(self._batchDict[key_idx], col_labels=nDimensionLabels, foldin=True, truncate=truncate) else: self._singleUpdateMatrix.create(self._batchDict[key_idx], row_labels=nDimensionLabels, foldin=True, truncate=truncate) # If it's trying to foldin a new user who has rated a new item which was not used before, then foldin the item first then foldin that user if not truncate: additionalElements = self._singleUpdateMatrix.get_additional_elements( ) if len(additionalElements) != 0: for item in additionalElements: if ( is_row ): # if I am folding in a row then , the additionals added that shouldn't be are the columns to be folded in to the rows self._singleAdditionalFoldin.create( [(0, nDimensionLabels[0], item)], row_labels=self._U.all_labels()[0]) else: self._singleAdditionalFoldin.create( [(0, item, nDimensionLabels[0])], col_labels=self._V.all_labels()[0]) self._update( update_matrix=self._singleAdditionalFoldin, is_row=not is_row) if self._shifts: # if not None then it means mean_center was equal true row_shift, col_shift, total_shift = self._shifts meanedMatrix, rowShift, colShift, totalShift = self._calc_mean_center( self._singleUpdateMatrix.get(), is_row=is_row) self._singleUpdateMatrix.set(meanedMatrix) # row shift cause it's row for the time being if is_row: meanDenseVector.append(rowShift) else: meanDenseVector.append(colShift) if self._matrix.get(): #if matrix not there due to load ignore it self._matrix.update( self._singleUpdateMatrix, is_batch=isbatch ) # updating the data matrix for the zeroes , also for saving the data matrix if needed self._update( is_row=is_row, is_batch=isbatch) #Do foldin on the singleUpdateMatrix tuple if VERBOSE: sys.stdout.write('\n') # UPDATING MEAN CENTER PART if self._shifts: sys.stdout.write("updating shifts") if is_row: values, named_rows = row_shift.to_sparse().named_lists( ) # values numpy array, named_rows normal array else: values, named_rows = col_shift.to_sparse().named_lists( ) # values numpy array, named_rows normal array for vector in meanDenseVector: valuesFold, named_rowsFold = vector.to_sparse().named_lists( ) # rowShift contains new calculated row shift values = np.concatenate((values, valuesFold)) named_rows.extend(named_rowsFold) if is_row: row_shift = divisiSparseVector.from_named_lists( values, named_rows).to_dense() else: col_shift = divisiSparseVector.from_named_lists( values, named_rows).to_dense() self._shifts = (row_shift, col_shift, total_shift) self.update_sparse_matrix_data(is_batch=True, squish=False, post_normalize=post_normalize) def update_sparse_matrix_data(self, squishFactor=10, is_batch=False, squish=True, post_normalize=False): #update the data matrix if is_batch: if self._matrix.get(): if VERBOSE: print "updating sparse index" self._matrix.index_sparseMatrix() if VERBOSE: print "before updating, M=", self._matrix_reconstructed.shape # Sim. matrix = U \Sigma^2 U^T self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if VERBOSE: print "done updating, M=", self._matrix_reconstructed.shape if squish: if self._matrix.get(): #if loaded model there is no matrix if VERBOSE: print "commiting the sparse data matrix by removing empty rows and columns divisi created" self._matrix.squish( squishFactor ) # updating the data matrix for the zeroes ,#NOTE: Intensive so do at end def _update(self, update_matrix=None, is_row=True, is_batch=False, post_normalize=False): #The function which does the actual folding-in process if self.inv_S is None: self.inv_S = np.zeros((self._S.shape[0], self._S.shape[0])) for i in range(self._S.shape[0]): self.inv_S[i, i] = self._S[ i]**-1 # creating diagonal matrix and inverting using special property of diagonal matrix #if new is row -> V*S^-1 if is_row: prodM = self._V.dot(self.inv_S) # if VERBOSE: # print "dimension of VxS^-1=", prodM.shape else: #if new is col -> U*S^-1 prodM = self._U.dot(self.inv_S) # if VERBOSE: # print "dimension of UxS^-1=", prodM.shape if update_matrix: updateTupleMatrix = update_matrix.get() else: updateTupleMatrix = self._singleUpdateMatrix.get() if not is_row: updateTupleMatrix = updateTupleMatrix.transpose() #transpose res = updateTupleMatrix.dot(prodM) if is_row: #new value can now be concatinated with U self._U = self._U.concatenate(res) else: #new value can now be concatinated with V self._V = self._V.concatenate(res) if not is_batch: #will reconstruct all at end with batch using another function if VERBOSE: print "before updating, M=", self._matrix_reconstructed.shape # Sim. matrix = U \Sigma^2 U^T self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if VERBOSE: print "done updating, M=", self._matrix_reconstructed.shape def centroid(self, ids, is_row=True): points = [] for id in ids: if is_row: point = self._U.row_named(id) else: point = self._V.row_named(id) points.append(point) M = divisi2.SparseMatrix(points) return M.col_op(sum) / len(points) #TODO Numpy.sum? def kmeans(self, ids, k=5, components=3, are_rows=True): """ K-means clustering. It uses k-means++ (http://en.wikipedia.org/wiki/K-means%2B%2B) to choose the initial centroids of the clusters Clusterizes a list of IDs (either row or cols) :param ids: list of row (or col) ids to cluster :param k: number of clusters :param components: how many eigen values use (from SVD) :param are_rows: is param *ids* a list of rows (or cols)? :type are_rows: Boolean """ if not isinstance(ids, list): # Cluster the whole row(or col) values. It's slow! return super(SVD, self).kmeans(ids, k=k, is_row=are_rows) if VERBOSE: sys.stdout.write('Computing k-means, k=%s for ids %s\n' % (k, ids)) MAX_POINTS = 150 points = [] for id in ids: if are_rows: points.append(self._U.row_named(id)[:components]) else: points.append(self._V.row_named(id)[:components]) M = array(points) # Only apply Matrix initialization if num. points is not that big! if len(points) <= MAX_POINTS: centers = self._kinit(array(points), k) centroids, labels = kmeans2(M, centers, minit='matrix') else: centroids, labels = kmeans2(M, k, minit='random') i = 0 clusters = dict() for cluster in labels: if not clusters.has_key(cluster): clusters[cluster] = dict() clusters[cluster]['centroid'] = centroids[cluster] clusters[cluster]['points'] = [] point = self._U.row_named(ids[i])[:components] centroid = clusters[cluster]['centroid'] to_centroid = self._cosine(centroid, point) clusters[cluster]['points'].append((ids[i], to_centroid)) clusters[cluster]['points'].sort(key=itemgetter(1), reverse=True) i += 1 return clusters '''
class SVD(Algorithm): """ Inherits from base class Algorithm. It computes SVD (Singular Value Decomposition) on a matrix *M* It also provides recommendations and predictions using the reconstructed matrix *M'* :param filename: Path to a Zip file, containing an already computed SVD (U, Sigma, and V) for a matrix *M* :type filename: string """ def __init__(self, filename=None): #Call parent constructor super(SVD, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename) def __repr__(self): try: s = '\n'.join(('M\':' + str(self._reconstruct_matrix()), \ 'A row (U):' + str(self._reconstruct_matrix().right[1]), \ 'A col (V):' + str(self._reconstruct_matrix().left[1]))) except TypeError: s = self._data.__repr__() return s def load_model(self, filename): """ Loads SVD transformation (U, Sigma and V matrices) from a ZIP file :param filename: path to the SVD matrix transformation (a ZIP file) :type filename: string """ try: zip = zipfile.ZipFile(filename, allowZip64=True) except: zip = zipfile.ZipFile(filename + '.zip', allowZip64=True) #Python 2.6 only: #self._U = loads(zip.open('.U').read()) #self._S = loads(zip.open('.S').read()) #self._V = loads(zip.open('.V').read()) self._U = loads(zip.read('.U')) self._S = loads(zip.read('.S')) self._V = loads(zip.read('.V')) self._shifts = None if '.shifts.row' in zip.namelist(): self._shifts = [ loads(zip.read('.shifts.row')), loads(zip.read('.shifts.col')), loads(zip.read('.shifts.total')) ] self._reconstruct_matrix(shifts=self._shifts, force=True) self._reconstruct_similarity(force=True) def save_model(self, filename, options={}): """ Saves SVD transformation (U, Sigma and V matrices) to a ZIP file :param filename: path to save the SVD matrix transformation (U, Sigma and V matrices) :type filename: string :param options: a dict() containing the info about the SVD transformation. E.g. {'k': 100, 'min_values': 5, 'pre_normalize': None, 'mean_center': True, 'post_normalize': True} :type options: dict """ if VERBOSE: sys.stdout.write('Saving svd model to %s\n' % filename) f_opt = open(filename + '.config', 'w') for option, value in options.items(): f_opt.write('\t'.join((option, str(value))) + '\n') f_opt.close() self._U.dump(filename + '.U') self._S.dump(filename + '.S') self._V.dump(filename + '.V') if self._shifts: #(row_shift, col_shift, total_shift) self._shifts[0].dump(filename + '.shifts.row') self._shifts[1].dump(filename + '.shifts.col') self._shifts[2].dump(filename + '.shifts.total') zip = filename if not filename.endswith('.zip') and not filename.endswith('.ZIP'): zip += '.zip' fp = zipfile.ZipFile(zip, 'w', allowZip64=True) #options fp.write(filename=filename + '.config', arcname='README') os.remove(filename + '.config') #Store matrices for extension in ['.U', '.S', '.V']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) #Store mean center shifts if self._shifts: for extension in ['.shifts.row', '.shifts.col', '.shifts.total']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) def _reconstruct_similarity(self, post_normalize=True, force=True): if not self.get_matrix_similarity() or force: self._matrix_similarity = SimilarityMatrix() self._matrix_similarity.create(self._U, self._S, post_normalize=post_normalize) return self._matrix_similarity def _reconstruct_matrix(self, shifts=None, force=True): if not self._matrix_reconstructed or force: if shifts: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V, shifts=shifts) else: self._matrix_reconstructed = divisi2.reconstruct( self._U, self._S, self._V) return self._matrix_reconstructed def compute(self, k=100, min_values=None, pre_normalize=None, mean_center=False, post_normalize=True, savefile=None): """ Computes SVD on matrix *M*, :math:`M = U \Sigma V^T` :param k: number of dimensions :type k: int :param min_values: min. number of non-zeros (or non-empty values) any row or col must have :type min_values: int :param pre_normalize: normalize input matrix. Possible values are tfidf, rows, cols, all. :type pre_normalize: string :param mean_center: centering the input matrix (aka mean substraction) :type mean_center: Boolean :param post_normalize: Normalize every row of :math:`U \Sigma` to be a unit vector. Thus, row similarity (using cosine distance) returns :math:`[-1.0 .. 1.0]` :type post_normalize: Boolean :param savefile: path to save the SVD factorization (U, Sigma and V matrices) :type savefile: string """ super(SVD, self).compute(min_values) if VERBOSE: sys.stdout.write( 'Computing svd k=%s, min_values=%s, pre_normalize=%s, mean_center=%s, post_normalize=%s\n' % (k, min_values, pre_normalize, mean_center, post_normalize)) if not min_values: sys.stdout.write( '[WARNING] min_values is set to None, meaning that some funky recommendations might appear!\n' ) # Get SparseMatrix matrix = self._matrix.get() # Mean center? shifts, row_shift, col_shift, total_shift = (None, None, None, None) if mean_center: if VERBOSE: sys.stdout.write( "[WARNING] mean_center is True. svd.similar(...) might return nan's. If so, then do svd.compute(..., mean_center=False)\n" ) matrix, row_shift, col_shift, total_shift = matrix.mean_center() self._shifts = (row_shift, col_shift, total_shift) # Pre-normalize input matrix? if pre_normalize: """ Divisi2 divides each entry by the geometric mean of its row norm and its column norm. The rows and columns don't actually become unit vectors, but they all become closer to unit vectors. """ if pre_normalize == 'tfidf': matrix = matrix.normalize_tfidf( ) #TODO By default, treats the matrix as terms-by-documents; # pass cols_are_terms=True if the matrix is instead documents-by-terms. elif pre_normalize == 'rows': matrix = matrix.normalize_rows() elif pre_normalize == 'cols': matrix = matrix.normalize_cols() elif pre_normalize == 'all': matrix = matrix.normalize_all() else: raise ValueError("Pre-normalize option (%s) is not correct.\n \ Possible values are: 'tfidf', 'rows', 'cols' or 'all'" % pre_normalize) #Compute SVD(M, k) self._U, self._S, self._V = matrix.svd(k) # Sim. matrix = U \Sigma^2 U^T self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if savefile: options = { 'k': k, 'min_values': min_values, 'pre_normalize': pre_normalize, 'mean_center': mean_center, 'post_normalize': post_normalize } self.save_model(savefile, options) def _get_row_reconstructed(self, i, zeros=None): if zeros: return self._matrix_reconstructed.row_named(i)[zeros] return self._matrix_reconstructed.row_named(i) def _get_col_reconstructed(self, j, zeros=None): if zeros: return self._matrix_reconstructed.col_named(j)[zeros] return self._matrix_reconstructed.col_named(j) def predict(self, i, j, MIN_VALUE=None, MAX_VALUE=None): """ Predicts the value of :math:`M_{i,j}`, using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` :param i: row in M, :math:`M_{i \cdot}` :type i: user or item id :param j: col in M, :math:`M_{\cdot j}` :type j: item or user id :param MIN_VALUE: min. value in M (e.g. in ratings[1..5] => 1) :type MIN_VALUE: float :param MAX_VALUE: max. value in M (e.g. in ratings[1..5] => 5) :type MAX_VALUE: float """ if not self._matrix_reconstructed: self.compute() #will use default values! predicted_value = self._matrix_reconstructed.entry_named( i, j) #M' = U S V^t if MIN_VALUE: predicted_value = max(predicted_value, MIN_VALUE) if MAX_VALUE: predicted_value = min(predicted_value, MAX_VALUE) return float(predicted_value) def recommend(self, i, n=10, only_unknowns=False, is_row=True): """ Recommends items to a user (or users to an item) using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` E.g. if *i* is a row and *only_unknowns* is True, it returns the higher values of :math:`M^\prime_{i,\cdot}` :math:`\\forall_j{M_{i,j}=\emptyset}` :param i: row or col in M :type i: user or item id :param n: number of recommendations to return :type n: int :param only_unknowns: only return unknown values in *M*? (e.g. items not rated by the user) :type only_unknowns: Boolean :param is_row: is param *i* a row (or a col)? :type is_row: Boolean """ if not self._matrix_reconstructed: self.compute() #will use default values! item = None zeros = [] if only_unknowns and not self._matrix.get(): raise ValueError( "Matrix is empty! If you loaded an SVD model you can't use only_unknowns=True, unless svd.create_matrix() is called" ) if is_row: if only_unknowns: zeros = self._matrix.get().row_named(i).zero_entries() item = self._get_row_reconstructed(i, zeros) else: if only_unknowns: zeros = self._matrix.get().col_named(i).zero_entries() item = self._get_col_reconstructed(i, zeros) return item.top_items(n) def centroid(self, ids, is_row=True): points = [] for id in ids: if is_row: point = self._U.row_named(id) else: point = self._V.row_named(id) points.append(point) M = divisi2.SparseMatrix(points) return M.col_op(sum) / len(points) #TODO Numpy.sum? def kmeans(self, ids, k=5, components=3, are_rows=True): """ K-means clustering. It uses k-means++ (http://en.wikipedia.org/wiki/K-means%2B%2B) to choose the initial centroids of the clusters Clusterizes a list of IDs (either row or cols) :param ids: list of row (or col) ids to cluster :param k: number of clusters :param components: how many eigen values use (from SVD) :param are_rows: is param *ids* a list of rows (or cols)? :type are_rows: Boolean """ if not isinstance(ids, list): # Cluster the whole row(or col) values. It's slow! return super(SVD, self).kmeans(ids, k=k, is_row=are_rows) if VERBOSE: sys.stdout.write('Computing k-means, k=%s for ids %s\n' % (k, ids)) MAX_POINTS = 150 points = [] for id in ids: if are_rows: points.append(self._U.row_named(id)[:components]) else: points.append(self._V.row_named(id)[:components]) M = array(points) # Only apply Matrix initialization if num. points is not that big! if len(points) <= MAX_POINTS: centers = self._kinit(array(points), k) centroids, labels = kmeans2(M, centers, minit='matrix') else: centroids, labels = kmeans2(M, k, minit='random') i = 0 clusters = dict() for cluster in labels: if not clusters.has_key(cluster): clusters[cluster] = dict() clusters[cluster]['centroid'] = centroids[cluster] clusters[cluster]['points'] = [] point = self._U.row_named(ids[i])[:components] centroid = clusters[cluster]['centroid'] to_centroid = self._cosine(centroid, point) clusters[cluster]['points'].append((ids[i], to_centroid)) clusters[cluster]['points'].sort(key=itemgetter(1), reverse=True) i += 1 return clusters '''
class Baseline(Algorithm): def __init__(self, filename=None): #Call parent constructor super(Baseline, self).__init__() # self._U: Eigen vector. Relates the concepts of the input matrix to the principal axes # self._S (or \Sigma): Singular -or eigen- values. It represents the strength of each eigenvector. # self._V: Eigen vector. Relates features to the principal axes self._U, self._S, self._V = (None, None, None) # Mean centered Matrix: row and col shifts self._shifts = None # self._matrix_reconstructed: M' = U S V^t self._matrix_reconstructed = None # Similarity matrix: (U \Sigma)(U \Sigma)^T = U \Sigma^2 U^T # U \Sigma is concept_axes weighted by axis_weights. self._matrix_similarity = SimilarityMatrix() if filename: self.load_model(filename) # Row and Col ids. Only when importing from SVDLIBC self._file_row_ids = None self._file_col_ids = None def __repr__(self): try: s = '\n'.join(('M\':' + str(self._reconstruct_matrix()), \ 'A row (U):' + str(self._reconstruct_matrix().right[1]), \ 'A col (V):' + str(self._reconstruct_matrix().left[1]))) except TypeError: s = self._data.__repr__() return s def load_model(self, filename): """ Loads SVD transformation (U, Sigma and V matrices) from a ZIP file :param filename: path to the SVD matrix transformation (a ZIP file) :type filename: string """ try: zip = zipfile.ZipFile(filename, allowZip64=True) except: zip = zipfile.ZipFile(filename + '.zip', allowZip64=True) # Options file options = dict() for line in zip.open('README'): data = line.strip().split('\t') options[data[0]] = data[1] try: k = int(options['k']) except: k = 100 #TODO: nasty!!! # Load U, S, and V """ #Python 2.6 only: #self._U = loads(zip.open('.U').read()) #self._S = loads(zip.open('.S').read()) #self._V = loads(zip.open('.V').read()) """ try: self._U = loads(zip.read('.U')) except: matrix = fromfile(zip.extract('.U', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k*i:k*(i+1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.row_ids').split('\n') if idx] except: idx = [ idx.strip() for idx in zip.read('.row_ids').split('\n') if idx] #self._U = DenseMatrix(vectors) self._U = DenseMatrix(vectors, OrderedSet(idx), None) try: self._V = loads(zip.read('.V')) except: matrix = fromfile(zip.extract('.V', TMPDIR)) vectors = [] i = 0 while i < len(matrix) / k: v = DenseVector(matrix[k*i:k*(i+1)]) vectors.append(v) i += 1 try: idx = [ int(idx.strip()) for idx in zip.read('.col_ids').split('\n') if idx] except: idx = [ idx.strip() for idx in zip.read('.col_ids').split('\n') if idx] #self._V = DenseMatrix(vectors) self._V = DenseMatrix(vectors, OrderedSet(idx), None) self._S = loads(zip.read('.S')) # Shifts for Mean Centerer Matrix self._shifts = None if '.shifts.row' in zip.namelist(): self._shifts = [loads(zip.read('.shifts.row')), loads(zip.read('.shifts.col')), loads(zip.read('.shifts.total')) ] self._reconstruct_matrix(shifts=self._shifts, force=True) self._reconstruct_similarity(force=True) def save_model(self, filename, options={}): """ Saves SVD transformation (U, Sigma and V matrices) to a ZIP file :param filename: path to save the SVD matrix transformation (U, Sigma and V matrices) :type filename: string :param options: a dict() containing the info about the SVD transformation. E.g. {'k': 100, 'min_values': 5, 'pre_normalize': None, 'mean_center': True, 'post_normalize': True} :type options: dict """ if VERBOSE: sys.stdout.write('Saving svd model to %s\n' % filename) f_opt = open(filename + '.config', 'w') for option, value in options.items(): f_opt.write('\t'.join((option, str(value))) + '\n') f_opt.close() # U, S, and V MAX_VECTORS = 2**21 if len(self._U) < MAX_VECTORS: self._U.dump(filename + '.U') else: self._U.tofile(filename + '.U') if len(self._V) < MAX_VECTORS: self._V.dump(filename + '.V') else: self._V.tofile(filename + '.V') self._S.dump(filename + '.S') # Shifts for Mean Centered Matrix if self._shifts: #(row_shift, col_shift, total_shift) self._shifts[0].dump(filename + '.shifts.row') self._shifts[1].dump(filename + '.shifts.col') self._shifts[2].dump(filename + '.shifts.total') zip = filename if not filename.endswith('.zip') and not filename.endswith('.ZIP'): zip += '.zip' fp = zipfile.ZipFile(zip, 'w', allowZip64=True) # Store Options in the ZIP file fp.write(filename=filename + '.config', arcname='README') os.remove(filename + '.config') # Store matrices in the ZIP file for extension in ['.U', '.S', '.V']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store mean center shifts in the ZIP file if self._shifts: for extension in ['.shifts.row', '.shifts.col', '.shifts.total']: fp.write(filename=filename + extension, arcname=extension) os.remove(filename + extension) # Store row and col ids file, if importing from SVDLIBC if self._file_row_ids: fp.write(filename=self._file_row_ids, arcname='.row_ids') if self._file_col_ids: fp.write(filename=self._file_col_ids, arcname='.col_ids') def _reconstruct_similarity(self, post_normalize=True, force=True): if not self.get_matrix_similarity() or force: self._matrix_similarity = SimilarityMatrix() self._matrix_similarity.create(self._U, self._S, post_normalize=post_normalize) return self._matrix_similarity def _reconstruct_matrix(self, shifts=None, force=True): if not self._matrix_reconstructed or force: if shifts: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V, shifts=shifts) else: self._matrix_reconstructed = divisi2.reconstruct(self._U, self._S, self._V) return self._matrix_reconstructed def _get_row_reconstructed(self, i, zeros=None): if zeros: return self._matrix_reconstructed.row_named(i)[zeros] return self._matrix_reconstructed.row_named(i) def _get_col_reconstructed(self, j, zeros=None): if zeros: return self._matrix_reconstructed.col_named(j)[zeros] return self._matrix_reconstructed.col_named(j) def compute(self, k=100, min_values=None, pre_normalize=None, mean_center=False, post_normalize=True, savefile=None): # Get SparseMatrix matrix = self._matrix.get() # Mean center? shifts, row_shift, col_shift, total_shift = (None, None, None, None) if mean_center: matrix, row_shift, col_shift, total_shift = matrix.mean_center() self._shifts = (row_shift, col_shift, total_shift) # Pre-normalize input matrix? if pre_normalize: """ Divisi2 divides each entry by the geometric mean of its row norm and its column norm. The rows and columns don't actually become unit vectors, but they all become closer to unit vectors. """ if pre_normalize == 'tfidf': matrix = matrix.normalize_tfidf() #TODO By default, treats the matrix as terms-by-documents; # pass cols_are_terms=True if the matrix is instead documents-by-terms. elif pre_normalize == 'rows': matrix = matrix.normalize_rows() elif pre_normalize == 'cols': matrix = matrix.normalize_cols() elif pre_normalize == 'all': matrix = matrix.normalize_all() else: raise ValueError("Pre-normalize option (%s) is not correct.\n \ Possible values are: 'tfidf', 'rows', 'cols' or 'all'" % pre_normalize) #Compute SVD(M, k) self._U, self._S, self._V = matrix.svd(k) # Sim. matrix = U \Sigma^2 U^T self._reconstruct_similarity(post_normalize=post_normalize, force=True) # M' = U S V^t self._reconstruct_matrix(shifts=self._shifts, force=True) if savefile: options = {'k': k, 'min_values': min_values, 'pre_normalize': pre_normalize, 'mean_center': mean_center, 'post_normalize': post_normalize} self.save_model(savefile, options) def recommend(self, i, n=10, only_unknowns=False, is_row=True): """ Recommends items to a user (or users to an item) using reconstructed matrix :math:`M^\prime = U \Sigma_k V^T` E.g. if *i* is a row and *only_unknowns* is True, it returns the higher values of :math:`M^\prime_{i,\cdot}` :math:`\\forall_j{M_{i,j}=\emptyset}` :param i: row or col in M :type i: user or item id :param n: number of recommendations to return :type n: int :param only_unknowns: only return unknown values in *M*? (e.g. items not rated by the user) :type only_unknowns: Boolean :param is_row: is param *i* a row (or a col)? :type is_row: Boolean """ if not self._matrix_reconstructed: self.compute() #will use default values! item = None zeros = [] if only_unknowns and not self._matrix.get(): raise ValueError("Matrix is empty! If you loaded an SVD model you can't use only_unknowns=True, unless svd.create_matrix() is called") if is_row: if only_unknowns: zeros = self._matrix.get().row_named(i).zero_entries() item = self._get_row_reconstructed(i, zeros) else: if only_unknowns: zeros = self._matrix.get().col_named(i).zero_entries() item = self._get_col_reconstructed(i, zeros) return item.top_items(n)