def pad(obj1, obj2): if len(obj1.coefs) > len(obj2.coefs): obj2.coefs = np.append( obj2.coefs, (zeros_gm(len(obj1.coefs) - len(obj2.coefs), 1))) elif len(obj1.coefs) < len(obj2.coefs): obj1.coefs = np.append( obj1.coefs, (zeros_gm(len(obj2.coefs) - len(obj1.coefs), 1))) arr1 = obj1.coefs arr2 = obj2.coefs return arr1, arr2
def __init__(self, coefs, j, k, lam=np.array([1])): ''' Constructor for Polynomial. Args: coefs: np.array of coefficients of the polynomial in terms of the monomial basis P_jk. (Note: the basis is ordered {P_01, P_02, P_03, P_11, P_12, P_13, ...}). j: degree of polynomial. If the length of coefs does not equal 3*j + 3, zeros are added to the end of coefs. k: family of polynomial. Since most of the polynomials we will deal with will come only from a certain family (k = 1, 2, or 3), setting the k value will allow us to deal with only the basis {P_0k, P_1k, ...}. lam: np.array of lambda_values used for calculating inner products. If lam contains only one value, it is set as a scalar. The default value is 1 (corresponding to the regular Sobolev inner product). ''' if not len(coefs) == 3 * j + 3: ad = zeros_gm(3 * j + 3 - len(coefs), 1) coefs = np.append(coefs, ad) self.coefs = coefs self.j = j self.k = k if len(lam) == 1: lam = lam[0] self.lam = lam
def build_condensed_GM(n, i, lam=np.array([1])): ''' When we work with only polynomials from a certain family (k = 1, 2, or 3), it is more convenient to only work with the basis {P_0k, P_1k,...}. This function creates the Gram Matrix for a given generalized Sobolev inner product. Args: n: size of Gram Matrix required i: family of polynomials (i represents k in the preceding paragraph) lam: np.array of lambda values for the generalized Sobolev inner product. The default value is 1 (corresponding to the regular Sobolev inner product). If lam = np.array([0]), this is the L2 inner product. ''' if Polynomial.has_GM(3 * n + 3, lam): return arr = zeros_gm(n, n) if not (np.array_equal(lam, np.array([1])) \ or np.array_equal(lam, np.array([0]))): lam_arr = [np.array([1]), np.array([0]), lam] else: lam_arr = [np.array([1]), np.array([0])] for lamb in lam_arr: for ind1 in tqdm.tqdm(range(n), file=sys.stdout): for ind2 in range(n): if ind1 <= ind2: arr[ind1, ind2] = \ Polynomial.basis_inner(ind1, i, ind2, i, lamb) Polynomial.GM[lis2str(lamb)] = symmetrize(arr)
def build_GM(n, lam=np.array([1])): ''' Constructs Gram Matrix of a given size for a given generalized Sobolev inner product. This is used to later compute inner products more quickly. The Gram Matrix is stored in the dictionary Polynomial.GM keyed by the string representing the values of lambda. Args: n: size of Gram Matrix lam: np.array of lambda values for the generalized Sobolev inner product. The default value is 1 (corresponding to the regular Sobolev inner product). If lam = np.array([0]), this is the L2 inner product. ''' if Polynomial.has_GM(3 * n + 3, lam): return arr = zeros_gm(3 * n + 3, 3 * n + 3) #The following if else statements make an array lam_arr that represents the weights of all the integrals # in the inner product formula. This is required because lam only describes the weights on the integrals with positive order laplacians because # integrals with positive order laplacians as we consider the weight on the L2 inner product to be 1. if not (np.array_equal(lam, np.array([1])) \ or np.array_equal(lam, np.array([0]))): lam_arr = [np.array([1]), np.array([0]), lam] else: lam_arr = [np.array([1]), np.array([0])] for lamb in lam_arr: for ind1 in range(n): for ind2 in range(n): if ind1 <= ind2: j = int(np.floor(ind1 / 3)) k = int(np.floor(ind2 / 3)) i = int(ind1 % 3 + 1) ip = int(ind2 % 3 + 1) arr[ind1, ind2] = \ Polynomial.basis_inner(j, i, k, ip, lamb) Polynomial.GM[lis2str(lamb)] = symmetrize(arr) return
def generate_symm_ops(n, normalized=False, lam=np.array([1]), frac=True): ''' Generates symmetric orthogonal polynomials with respect to a generalized Sobolev inner product. The Gram-Schmidt algorithm is implemented here. Args: n: Maximum degree of orthogonal polynomial. normalized: Boolean representing whether the resulting polynomials should be normalized or monic. lam: np.array of lambda values for the generalized Sobolev inner product. The default value is 1 (corresponding to the regular Sobolev inner product). If lam = np.array([0]), this is the L2 inner product. frac: Boolean representing whether the coefficients should remain as fractions or should be converted to floating point numbers at the end of all calculations. Returns: np.array of coefficients of the orthogonal polynomials with respect to the basis {R_0, R_1, ..., R_j}. Each row in this array is a polynomial, and there are n+1 rows and n+1 columns. If normalized is True, the polynomials will be normalized. Otherwise, the polynomials will be monic. If normalized is True, frac must be False to obtain normalized coefficients. ''' print('Building Gram Matrix ... this may take some time') SGM = zeros_gm(n + 1, n + 1) for ind1 in range(n + 1): for ind2 in range(n + 1): if ind1 <= ind2: SGM[ind1, ind2] = inner_rjrk(ind1, ind2, lam) SGM = symmetrize(SGM) basis_mat = eye_gm(n + 1) o_basis_mat = zeros_gm(n + 1, n + 1) o_basis_mat[0] = basis_mat[0] print('Orthogonalizing Using Gram-Schmidt') for r in tqdm.tqdm(range(1, n + 1)): u_r = basis_mat[r] for i in range(r): v_i = o_basis_mat[i] proj = Polynomial.fast_inner(u_r, v_i, SGM) norm = Polynomial.fast_inner(v_i, v_i, SGM) u_r -= (proj / norm) * v_i o_basis_mat[r] = u_r if frac and normalized: print( 'Normalization requires conversion to float. Please set frac = False.' ) print('Generating non-normalized coefficients now...') if not frac: if normalized: o_basis_arr = np.zeros((n + 1, n + 1)) print('Normalizing') for i in tqdm.tqdm(range(n + 1)): norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i], SGM) o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm) return o_basis_arr return np.array(o_basis_mat, dtype=np.float64) return o_basis_mat
def leg_ops_recursion(j, k, normalized=False, frac=True, return_f=False): ''' This function uses the three term recursion from the Kasso Tuley paper to generate the first j Legendre orthogonal polynomials. Args: j: maximum degree of polynomials k: family of monomials to use in the construction of the orthogonal polynomials (only k = 2,3 supported currently) normalized: Boolean representing whether the resulting polynomials should be normalized or monic. frac: Boolean representing whether the coefficients should remain as fractions or should be converted to floating point numbers at the end of all calculations return_f: Boolean representing whether the f polynomials should also be returned Returns: np.array of coefficients of the Legendre orthogonal polynomials with respect to the basis {P_0k, P_1k,..., P_jk}. Each row in this array is a polynomial, and there are j+1 rows and j+1 columns. If normalized is True, the polynomials will be normalized. Otherwise, the polynomials will be monic. If normalized is True, frac must be False to obtain normalized coefficients. If return_f is True, a tuple containing the Legendre coefficients and the f polynomial coefficients is returned. ''' if k == 1: print('This method is currently only proven for k = 2 or 3.') # this is so the indices match if return_f: f_mat = np.empty((j + 1, j + 1), dtype=object) o_basis_mat = np.empty((j + 1, j + 1), dtype=object) print( 'Using Gram-Schmidt to get the initial Legendre polynomials for recursion' ) with HiddenPrints(): first_mat = generate_op_GS(1, k, normalized=False, lam=np.array([0]), frac=frac) const = gm.mpz(0) if frac else 0 first_mat = np.pad(first_mat, ((0, 0), (0, j - 1)), 'constant', constant_values=(const, )) o_basis_mat[:2] = first_mat if k == 3: func_array = gamma_array if k == 2: func_array = beta_array if k == 1: func_array = alpha_array print('Generating values for f_n') func_arr = func_array(j + 2) print('Building Gram Matrix for inner product caluclation.') Polynomial.build_condensed_GM(j + 1, k, np.array([0])) GM = Polynomial.GM[lis2str(np.array([0]))][:j + 1, :j + 1] print('Using recursion to generate the rest of the Legendre Poynomials') if return_f: f_mat[0] = zeros_gm(1, f_mat.shape[1]) func_vec = func_arr[1:2] omega_vec = o_basis_mat[0, :1] zeta_ind = gm.mpq(-1, func_arr[0]) * func_vec.dot(omega_vec) f_ind = np.insert(omega_vec, 0, zeta_ind) f_mat[1] = np.pad(f_ind, (0, j - 1), 'constant', constant_values=(const, )) for ind in tqdm.tqdm(range(1, j), file=sys.stdout): func_vec = func_arr[1:ind + 2] omega_vec = o_basis_mat[ind, :ind + 1] zeta_ind = gm.mpq(-1, func_arr[0]) * func_vec.dot(omega_vec) f_ind = np.insert(omega_vec, 0, zeta_ind) d_ind2 = gm.mpq( 1, Polynomial.fast_inner(o_basis_mat[ind, :ind + 1], o_basis_mat[ind, :ind + 1], GM[:ind + 1, :ind + 1])) d_indm2 = gm.mpq( 1, Polynomial.fast_inner(o_basis_mat[ind - 1, :ind], o_basis_mat[ind - 1, :ind], GM[:ind, :ind])) b_ind = d_ind2 * Polynomial.fast_inner( f_ind, o_basis_mat[ind, :ind + 2], GM[:ind + 2, :ind + 2]) c_ind = gm.mpq(d_indm2, d_ind2) new_vec = f_ind - b_ind * o_basis_mat[ ind, :ind + 2] - c_ind * o_basis_mat[ind - 1, :ind + 2] o_basis_mat[ind + 1] = np.pad(new_vec, (0, j - ind - 1), 'constant', constant_values=(const, )) if return_f: f_mat[ind + 1] = np.pad(f_ind, (0, j - ind - 1), 'constant', constant_values=(const, )) if frac and normalized: print( 'Normalization requires conversion to float. Please set frac = False.' ) print('Generating non-normalized coefficients now...') if not frac: if normalized: o_basis_arr = np.zeros((j + 1, j + 1)) print('Normalizing') for i in tqdm.tqdm(range(j + 1), file=sys.stdout): norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i], GM) o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm) return (o_basis_arr, np.array( f_mat, dtype=np.float64)) if return_f else o_basis_arr return (np.array(o_basis_mat, dtype=np.float64), np.array(f_mat, dtype=np.float64)) if return_f else np.array( o_basis_mat, dtype=np.float64) return (o_basis_mat, f_mat) if return_f else o_basis_mat
def generate_op_GS(n, k, normalized=False, lam=np.array([1]), frac=True): ''' Generates orthogonal polynomials with respect to a generalized Sobolev inner product. The Gram-Schmidt algorithm is implemented here. Args: n: Maximum degree of orthogonal polynomial. k: family of monomials to use in Gram-Schmidt (k = 1, 2, or 3) normalized: Boolean representing whether the resulting polynomials should be normalized or monic. lam: np.array of lambda values for the generalized Sobolev inner product. The default value is 1 (corresponding to the regular Sobolev inner product). If lam = np.array([0]), this is the L2 inner product. frac: Boolean representing whether the coefficients should remain as fractions or should be converted to floating point numbers at the end of all calculations. Returns: np.array of coefficients of the orthogonal polynomials with respect to the basis {P_0k, P_1k,..., P_nk}. Each row in this array is a polynomial, and there are n+1 rows and n+1 columns. If normalized is True, the polynomials will be normalized. Otherwise, the polynomials will be monic. If normalized is True, frac must be False to obtain normalized coefficients. ''' print('Building Gram Matrix ... this may take some time') Polynomial.build_condensed_GM(n + 1, k, lam) basis_mat = eye_gm(n + 1) o_basis_mat = zeros_gm(n + 1, n + 1) o_basis_mat[0] = basis_mat[0] GM = Polynomial.GM[lis2str(lam)][:n + 1, :n + 1] print('Orthogonalizing Using Gram-Schmidt') for r in tqdm.tqdm(range(1, n + 1), file=sys.stdout): u_r = basis_mat[r] for i in range(r): v_i = o_basis_mat[i] proj = Polynomial.fast_inner(u_r, v_i, GM) norm = Polynomial.fast_inner(v_i, v_i, GM) u_r -= (proj / norm) * v_i o_basis_mat[r] = u_r if frac and normalized: print( 'Normalization requires conversion to float. Please set frac = False.' ) print('Generating non-normalized coefficients now...') if not frac: if normalized: o_basis_arr = np.zeros((n + 1, n + 1)) print('Normalizing') for i in tqdm.tqdm(range(n + 1), file=sys.stdout): norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i], GM) o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm) return o_basis_arr return np.array(o_basis_mat, dtype=np.float64) return o_basis_mat
def big_recursion(j): ''' This function computes the coefficients a_j, b_j, p_j, q_j found in the Splines on Fractals paper. Args: j: index of coefficients Returns: 4 x j+1 np.array of coefficients a_j, b_j, p_j, q_j from 0 to j ''' # Initialize space for the coefficients p_arr = zeros_gm(j + 1, 1) q_arr = zeros_gm(j + 1, 1) a_arr = zeros_gm(j + 1, 1) b_arr = zeros_gm(j + 1, 1) # Initialize arrays for the 0-th term a_arr[0] = gm.mpq(7, 45) b_arr[0] = gm.mpq(4, 45) p_arr[0] = gm.mpq(2, 5) q_arr[0] = gm.mpq(1, 5) if j == 0: return np.vstack((a_arr, b_arr, p_arr, q_arr)) # Main recursion for l in range(1, j + 1): # Implements equation (5.6) in Splines paper res3 = 0 res4 = 0 for k in range(l): p = p_arr[k] q = q_arr[k] a = a_arr[l - k - 1] b = b_arr[l - k - 1] res3 += (4 * a + 3 * b) * p + (a + 2 * b) * q res4 += (2 * a + 4 * b) * p + (3 * a + b) * q b = b_arr[l - 1] p_arr[l] = -gm.mpq(2, 5) * b - gm.mpq(1, 5) * res3 q_arr[l] = -gm.mpq(1, 5) * b - gm.mpq(1, 5) * res4 # Implements equation (5.5) in Splines paper res1 = 0 res2 = 0 vec = zeros_gm(2, 1) for k in range(l): p = p_arr[l - k] q = q_arr[l - k] a = a_arr[k] b = b_arr[k] res1 += (2 * p + q) * (a + 2 * b) res2 += (p + 2 * q) * (a + 2 * b) vec[0] = gm.mpq(2, (3 * (5**l - 1))) * res1 vec[1] = gm.mpq(10, (3 * (5**(l + 1) - 1))) * res2 coefs_inv = np.array([[gm.mpq(7, 15), gm.mpq(-2, 15)], [gm.mpq(4, 15), gm.mpq(1, 15)]]) ab_arr = coefs_inv.dot(vec) a_arr[l] = ab_arr[0] b_arr[l] = ab_arr[1] return np.vstack((a_arr.T, b_arr.T, p_arr.T, q_arr.T))