Example #1
0
    def debye_decomposition_one_spectrum(self,
                                         abmn,
                                         spectrum,
                                         gen_plots_in_dir=None):
        """Conduct a Debye Decomposition on each spectrum. Save certain
        parameters in sEIT.data columns and/or return fit data
        """
        opt_import('lib_dd')
        import lib_dd.decomposition.ccd_single as ccd_single
        import lib_dd.config.cfg_single as cfg_single

        print(abmn)

        # set options using this dict-like object
        config = cfg_single.cfg_single()
        config['frequency_file'] = spectrum['frequency'].values
        rmag_rpha = np.hstack((
            spectrum['r'],
            spectrum['rpha'],
        ))
        # print('rmag_rpha')
        # print(rmag_rpha)
        config['data_file'] = rmag_rpha
        ccd_obj = ccd_single.ccd_single(config)
        ccd_obj.fit_data()
        last_it = ccd_obj.results[0].iterations[-1]

        if gen_plots_in_dir is not None:
            pwd = os.getcwd()
            os.makedirs(gen_plots_in_dir, exist_ok=True)
            os.chdir(gen_plots_in_dir)
            filename = 'plot_{}.jpg'.format(abmn.values[0, :])
            print('FILENAME', filename)
            last_it.plot(filename=filename)
            os.chdir(pwd)

        return last_it
Example #2
0
"""
Compute geometric factors (also referred to as K) using CRMod/CRTomo
"""
import os
import tempfile
import shutil
import subprocess

import numpy as np
import pandas as pd

from reda.utils import opt_import

CRbinaries = opt_import("crtomo.binaries")
CRcfg = opt_import("crtomo.cfg")

import reda.utils.mpl

plt, mpl = reda.utils.mpl.setup()


def _write_config_file(filename, dataframe):
    if isinstance(dataframe, pd.DataFrame):
        AB = dataframe['a'].values * 1e4 + dataframe['b'].values
        MN = dataframe['m'].values * 1e4 + dataframe['n'].values
    else:
        AB = dataframe[:, 0] * 1e4 + dataframe[:, 1]
        MN = dataframe[:, 2] * 1e4 + dataframe[:, 3]

    with open(filename, 'wb') as fid:
        fid.write('{0}\n'.format(AB.shape[0]).encode('utf-8'))
Example #3
0
    def to_pg_scheme(self, container=None, positions=None):
        """Convert the configuration to a pygimli measurement scheme

        Parameters
        ----------
        container: reda.containers.ERT.ERT
            an ERT data container (we take the electrode positions from here)
        positions = None

        Returns
        -------
        data: pybert.DataContainerERT

        Examples
        --------

            import numpy as np
            from reda.configs.configManager import ConfigManager
            configs = ConfigManager(nr_of_electrodes=48)
            new_configs = configs.gen_dipole_dipole(skipc=2)
            x = np.arange(0, 48, 1)
            z = np.ones(48) * -1
            y = np.zeros(48)
            xyz = np.vstack((x, y, z)).T
            scheme = configs.to_pg_scheme(positions=xyz)
            print(scheme)


        """
        if container is None and positions is None:
            raise Exception('electrode positions are required for BERT export')

        if container is not None and container.electrodes is None:
            raise Exception('container does not contain electrode positions')

        if container is not None and positions is not None:
            raise Exception(
                'only one of container OR positions must be provided')

        if container is not None:
            elec_positions = container.electrodes.values
        elif positions is not None:
            elec_positions = positions

        opt_import("pybert", requiredFor="")
        import pybert

        # Initialize BERT DataContainer
        data = pybert.DataContainerERT()

        # Define electrodes (48 electrodes spaced by 0.5 m)
        for nr, (x, y, z) in enumerate(elec_positions):
            data.createSensor((x, y, z))

        # Define number of measurements
        data.resize(self.configs.shape[0])

        for index, token in enumerate("abmn"):
            data.set(token, self.configs[:, index].tolist())

        # account for zero indexing
        for token in "abmn":
            data.set(token, data(token) - 1)

        # np.vstack([data.get(x).array() for x in ("abmn")]).T
        return data
Example #4
0
# *-* coding: utf-8 *-*
import re
import itertools
import pandas as pd
import numpy as np
# from StringIO import StringIO
from io import StringIO
import os
import logging

from reda.utils import opt_import
IPython = opt_import("IPython", "interactive debugging")


def _get_nr_of_electrodes(header_group):
    groups = itertools.groupby(
        header_group, lambda line:
        (line.startswith('[Number of Remote Units]')))
    for switch, group in groups:
        if switch:
            nr_of_electrodes = int(next(group)[24:].strip()) + 1
            return nr_of_electrodes


def parse_readic_header(header_group, dipole_mode="all"):
    """
    Parameters
    ----------
    dipole_mode: Which dipoles should be extracted
        "all"
        "before"