wave_rebin_hi = 10850. coeff1 = rebin_dloglam coeff0 = coeff1 * n.floor(n.log10(wave_rebin_lo) / coeff1) naxis1 = int(n.ceil(1. + (n.log10(wave_rebin_hi) - coeff0) / coeff1)) loglam_rebin = coeff0 + coeff1 * n.arange(naxis1) logbound_rebin = pxs.cen2bound(loglam_rebin) wavebound_rebin = 10.**logbound_rebin # Initialize array for rebinned blurred SSPs: ssp_rebin = n.zeros((nsub_age, naxis1), dtype=float) # Do the rebinning: for i_age in xrange(nsub_age): print(i_age) pxspline = pxs.PixelSpline(ssp_wavebound, rebin_blur * ssp_flam[idx[i_age]]) ssp_rebin[i_age] = pxspline.resample(wavebound_rebin) baselines = [n.log10(ssp_agegyr[idx])] this_class = 'ssp_hires_galaxy' this_version = 'v001' infodict = { 'par_names': n.asarray(['log10-age']), 'par_units': n.asarray(['log10-Gyr']), 'par_axistype': n.asarray(['regular']), 'coeff0': coeff0, 'coeff1': coeff1, 'fluxunit': '10^' + str(exp_div) + ' erg/s/Ang/M_sun_init', 'filename': 'ndArch-' + this_class + '-' + this_version + '.fits'
coeff1 = sdss_dloglam coeff0 = coeff1 * n.floor(n.log10(wave_sdss_lo) / coeff1) naxis1 = int(n.ceil(1. + (n.log10(wave_sdss_hi) - coeff0) / coeff1)) loglam_sdss = coeff0 + coeff1 * n.arange(naxis1) logbound_sdss = pxs.cen2bound(loglam_sdss) wavebound_sdss = 10.**logbound_sdss # Initialize array for rebinned blurred SSPs: ssp_sdssbin = n.zeros((nsub_age, log_vnum, naxis1), dtype=float) # Do the rebinning: for i_age in xrange(nsub_age): print(i_age) for j_logv in xrange(log_vnum): pxspline = pxs.PixelSpline(ssp_wavebound, ssp_vblur[i_age,j_logv]) ssp_sdssbin[i_age,j_logv] = pxspline.resample(wavebound_sdss) #i = -1L #i +=1 #p.plot(10.**loglam_sdss, ssp_sdssbin[i,0], drawstyle='steps-mid', hold=False) #p.plot(10.**loglam_sdss, ssp_sdssbin[i,1], drawstyle='steps-mid', hold=True) #p.plot(10.**loglam_sdss, ssp_sdssbin[i,2], drawstyle='steps-mid', hold=True) #p.plot(10.**loglam_sdss, ssp_sdssbin[i,3], drawstyle='steps-mid', hold=True) #p.title(str(n.log10(ssp_agegyr[idx[i]]))) # Now to get the emission-line fluxes: emfile = 'lineratios.fits' linedata = fits.getdata(emfile,1)
coeff1 = sdss_dloglam coeff0 = coeff1 * n.floor(n.log10(wave_sdss_lo) / coeff1) naxis1 = int(n.ceil(1. + (n.log10(wave_sdss_hi) - coeff0) / coeff1)) loglam_sdss = coeff0 + coeff1 * n.arange(naxis1) logbound_sdss = pxs.cen2bound(loglam_sdss) wavebound_sdss = 10.**logbound_sdss # Initialize array for rebinned blurred stars: cap_sdssbin = n.zeros((npars, naxis1), dtype=float) # Do the blurring and rebinning: for i in xrange(npars): print(i) blurspec = sdss_blur * data_flat[i] pxspline = pxs.PixelSpline(hires_wavebound, sdss_blur * data_flat[i]) cap_sdssbin[i] = pxspline.resample(wavebound_sdss) #i = -1L # #i += 1 #p.plot(10.**loglam_sdss, cap_sdssbin[i], drawstyle='steps-mid', hold=False) # reshape the array: out_shape = data[..., 0].shape + (naxis1, ) cap_sdssbin.resize(out_shape) out_infodict = copy.deepcopy(infodict) out_infodict['version'] = infodict['version'] + '_lr' out_infodict['filename'] = 'ndArch-' + out_infodict[ 'class'] + '-' + out_infodict['version'] + '.fits'