def main(alpha, beta, URM_train, URM_test):

    ICM = load_icm()

    cf = GeneralEnsemble(URM_train, ICM, 50, epsilon=beta)
    cf.fit(alpha)

    target = pd.read_csv('../../data/target_playlists.csv', index_col=False)
    recommended = cf.recommendALL(target.values)

    playlists = recommended[:, 0]
    recommended = np.delete(recommended, 0, 1)
    i = 0
    res_fin = []
    for j in recommended:
        res = ''
        for k in range(0, len(j)):
            res = res + '{0} '.format(j[k])
        res_fin.append(res)
        i = i + 1
    d = {'playlist_id': playlists, 'track_ids': res_fin}
    df = pd.DataFrame(data=d, index=None)
    df.to_csv("./results/resultsEnsembleAll.csv", index=None)

    return evaluate_csv(URM_test, "./results/resultsEnsembleAll.csv")
Example #2
0
def write_results(id,
                  urm_test,
                  dict,
                  data_frame,
                  component_attributes,
                  encoder=None):
    if encoder is None:
        encoder = json.JSONEncoder()
    filename = "../results/P3_ALPHA/result_{0}.csv".format(id)
    data_frame.to_csv(filename, index=None)
    eval = evaluate_csv(urm_test, filename)
    eval_json = encoder.encode(eval)
    param_json = encoder.encode(dict)
    param_file = open('../results/P3_ALPHA/params_{0}.json'.format(id),
                      mode='w')
    param_file.write(param_json)
    param_file.close()
    param_attributes_json = encoder.encode(component_attributes)
    param_attributes_file = open(
        '../results/P3_ALPHA/param_attributes_{0}.json'.format(id), mode='w')
    param_attributes_file.write(param_attributes_json)
    param_attributes_file.close()
    eval_file = open('../results/P3_ALPHA/eval_{0}.json'.format(id), mode='w')
    eval_file.write(eval_json)
    eval_file.close()
    return eval
def main( write=True):
    URM_text = np.loadtxt('./data/train.csv', delimiter=',', dtype=int, skiprows=1)
    user_list, item_list = zip(*URM_text)
    rating_list = np.ones(len(user_list))
    URM = sps.csr_matrix((rating_list, (user_list, item_list)))
    urm_train, urm_test = load_random_urms()
    icm = load_icm()

    general = GeneralEnsemble(URM, urm_test, icm, recommendation_mode='linComb')
                              # alpha=alpha,
                              # beta=beta,
                              # gamma=gamma,
                              # epsilon=epsilon,
    general.fit(0.001)

    target = pd.read_csv('./data/target_playlists.csv', index_col=False)
    #evaluator_MF = SequentialEvaluator(URM_test_list=urm_test, cutoff_list=[10])
    #print(evaluator_MF.evaluateRecommender(general))

    if write is True:
        recommended = general.recommendALL(target.values)

        playlists = recommended[:, 0]
        recommended = np.delete(recommended, 0, 1)
        i = 0
        res_fin = []
        for j in recommended:
            res = ''
            for k in range(0, len(j)):
                res = res + '{0} '.format(j[k])
            res_fin.append(res)
            i = i + 1
        d = {'playlist_id': playlists, 'track_ids': res_fin}
        df = pd.DataFrame(data=d, index=None)
        df.to_csv("./results/TESTING_GENERAL_ENSEMBLE17_nocf.csv", index=None)
        del general
        return evaluate_csv(urm_test, "./results/TESTING_GENERAL_ENSEMBLE17_nocf.csv")
    test_auc = auc_score(model, test, train_interactions=train, num_threads=2).mean()
    print(test_auc)


if __name__ == '__main__':
    train, test = train_test_holdout(load_urm())
    recsys = LightFM_Recommender(train, load_icm(), 200)
    target = pd.read_csv('./data/target_playlists.csv', index_col=False)

    recsys.fit(epochs=100)

    recommended = recsys.recommendALL(target.values)

    playlists = recommended[:, 0]
    recommended = np.delete(recommended, 0, 1)
    i = 0
    res_fin = []
    for j in recommended:
        res = ''
        for k in range(0, len(j)):
            res = res + '{0} '.format(j[k])
        res_fin.append(res)
        i = i + 1
    d = {'playlist_id': playlists, 'track_ids': res_fin}
    df = pd.DataFrame(data=d, index=None)
    df.to_csv("./results/lightfm_test.csv", index=None)

    evaluate_csv(test, "./results/lightfm_test.csv")