Example #1
0
def main(unused_argv):
    logging.getLogger('mlperf_compliance').propagate = False

    sgf_dir = os.path.join(fsdb.eval_dir(), 'target')
    target = 'tf,' + os.path.join(fsdb.models_dir(), 'target.pb.og')
    models = load_train_times()

    timestamp_to_log = 0
    iter_evaluated = 0

    for i, (timestamp, name, path) in enumerate(models):
        minigo_print(key=constants.EVAL_START, metadata={'epoch_num': i + 1})

        iter_evaluated += 1
        winrate = wait(evaluate_model(path + '.og', target, sgf_dir, i + 1))

        minigo_print(key=constants.EVAL_ACCURACY,
                     value=winrate,
                     metadata={'epoch_num': i + 1})
        minigo_print(key=constants.EVAL_STOP, metadata={'epoch_num': i + 1})

        if winrate >= 0.50:
            timestamp_to_log = timestamp
            print('Model {} beat target after {}s'.format(name, timestamp))
            break

    minigo_print(key='eval_result',
                 metadata={
                     'iteration': iter_evaluated,
                     'timestamp': timestamp_to_log
                 })
Example #2
0
def main(unused_argv):
    sgf_dir = os.path.join(fsdb.eval_dir(), 'target')
    target = 'tf,' + os.path.join(fsdb.models_dir(), 'target.pb')
    models = load_train_times()
    for i, (timestamp, name, path) in enumerate(models):
        winrate = wait(evaluate_model(path, name, target, sgf_dir))
        if winrate >= 0.50:
            break
Example #3
0
def main(unused_argv):
    sgf_dir = os.path.join(fsdb.eval_dir(), 'target')
    target = 'tf,' + os.path.join(fsdb.models_dir(), 'target.pb')
    models = load_train_times()
    for i, (timestamp, name, path) in enumerate(models):
        winrate = wait(evaluate_model(path, target, sgf_dir, i + 1))
        if winrate >= 0.50:
            print('Model {} beat target after {}s'.format(name, timestamp))
            break
def main(unused_argv):
  sgf_dir = os.path.join(fsdb.eval_dir(), 'target')
  target = 'tf,' + os.path.join(fsdb.models_dir(), 'target.pb')
  models = load_train_times()
  for i, (timestamp, name, path) in enumerate(models):
    mll.eval_start(i)
    winrate = wait(evaluate_model(path, target, sgf_dir, i + 1))
    mll.eval_stop(i)
    mll.eval_accuracy(i, winrate)
    if winrate >= 0.50:
      print('Model {} beat target after {}s'.format(name, timestamp))
      mll.eval_result(i, timestamp)
      mll.run_stop('success')
      return
  mll.eval_result(i, 0)
  mll.run_stop('aborted')