def fit_reflectance_model(model_type, L, ori_r, r, ori_ndotl, ndotl, fit_falloff, width, height, *extra_params): # determine which reflectance model function to use if model_type == sfs.LAMBERTIAN_MODEL: model_func = reflectance_models.fit_lambertian elif model_type == sfs.OREN_NAYAR_MODEL: model_func = reflectance_models.fit_oren_nayar elif model_type == sfs.PHONG_MODEL: model_func = reflectance_models.fit_phong elif model_type == sfs.COOK_TORRANCE_MODEL: model_func = reflectance_models.fit_cook_torrance elif model_type == sfs.POWER_MODEL: model_func = reflectance_models.fit_power_model if not fit_falloff: falloff = 1.5 model_params, residual = model_func(L, ori_r, r, ori_ndotl, ndotl, width, height, *extra_params) else: #import pdb;pdb.set_trace() falloff, model_params, residual = reflectance_models.fit_with_falloff( L, ori_r, r, ori_ndotl, ndotl, width, height, model_func, *extra_params) print 'Residual =', residual print 'Falloff = ', falloff return falloff, model_params, residual
def fit_reflectance_model(model_type, L, r, ndotl, fit_falloff, *extra_params): # determine which reflectance model function to use if model_type == sfs.LAMBERTIAN_MODEL: model_func = reflectance_models.fit_lambertian elif model_type == sfs.OREN_NAYAR_MODEL: model_func = reflectance_models.fit_oren_nayar elif model_type == sfs.PHONG_MODEL: model_func = reflectance_models.fit_phong elif model_type == sfs.COOK_TORRANCE_MODEL: model_func = reflectance_models.fit_cook_torrance elif model_type == sfs.POWER_MODEL: model_func = reflectance_models.fit_power_model if not fit_falloff: falloff = 2. model_params, residual = model_func(L, r, ndotl, *extra_params) else: falloff, model_params, residual = reflectance_models.fit_with_falloff( L, r, ndotl, model_func, *extra_params) print 'Residual =', residual return falloff, model_params, residual
def fit_reflectance_model(model_type, L, ori_r, r, ori_ndotl,ndotl, fit_falloff,width,height, *extra_params): # determine which reflectance model function to use if model_type == sfs.LAMBERTIAN_MODEL: model_func = reflectance_models.fit_lambertian elif model_type == sfs.OREN_NAYAR_MODEL: model_func = reflectance_models.fit_oren_nayar elif model_type == sfs.PHONG_MODEL: model_func = reflectance_models.fit_phong elif model_type == sfs.COOK_TORRANCE_MODEL: model_func = reflectance_models.fit_cook_torrance elif model_type == sfs.POWER_MODEL: model_func = reflectance_models.fit_power_model if not fit_falloff: falloff =1.5 model_params, residual = model_func(L,ori_r, r,ori_ndotl,ndotl,width,height, *extra_params) else: #import pdb;pdb.set_trace() falloff, model_params, residual = reflectance_models.fit_with_falloff(L,ori_r, r,ori_ndotl,ndotl,width,height, model_func, *extra_params) print 'Residual =', residual print 'Falloff = ', falloff return falloff, model_params, residual