def test_smoke(self): # a quick smoke test to check that the reduction can occur # warnings filter for pixel size with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) a, fname = reduce_stitch( [708, 709, 710], [711, 711, 711], data_folder=self.pth, reduction_options={"rebin_percent": 2}, ) a.save("test1.dat") assert os.path.isfile("./test1.dat") # reduce_stitch should take a ReductionOptions dict opts = ReductionOptions() opts["rebin_percent"] = 2 a2, fname = reduce_stitch( [708, 709, 710], [711, 711, 711], data_folder=self.pth, reduction_options=[opts] * 3, ) a2.save("test2.dat") assert os.path.isfile("./test2.dat") assert_allclose(a.y, a2.y)
def test_smoke(self): # a quick smoke test to check that the reduction can occur # warnings filter for pixel size a, fname = reduce_stitch( [660, 661], [658, 659], data_folder=self.pth, prefix="SPZ", reduction_options={"rebin_percent": 2}, ) a.save("test1.dat") assert os.path.isfile("./test1.dat") # reduce_stitch should take a list of ReductionOptions dict, # separate dicts are used for different angles opts = ReductionOptions() opts["rebin_percent"] = 2 a2, fname = reduce_stitch( [660, 661], [658, 659], data_folder=self.pth, prefix="SPZ", reduction_options=[opts] * 2, ) a2.save("test2.dat") assert os.path.isfile("./test2.dat") assert_allclose(a.y, a2.y)
def test_smoke(self): # a quick smoke test to check that the reduction can occur # warnings filter for pixel size with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) a, fname = reduce_stitch([708, 709, 710], [711, 711, 711], data_folder=self.pth, rebin_percent=2) a.save('test1.dat')
def _reduce_row(self, entry): """Process a single row using reduce_stitch Parameters ---------- entry : pandas.Series Spreadsheet row for this data set """ # Identify the runs to be used for reduction runs = run_list(entry, "refl") directs = run_list(entry, "directs") if self.verbose: fmt = "Reducing %s [%s]/[%s]" print(fmt % ( entry["name"], ", ".join("%d" % r for r in runs), ", ".join("%d" % r for r in directs), )) sys.stdout.flush() # keep progress updated if not runs: warnings.warn("Row %d (%s) has no reflection runs. Skipped." % (entry["source"], entry["name"])) return None, None if not directs: warnings.warn("Row %d (%s) has no direct beam runs. Skipped." % (entry["source"], entry["name"])) return None, None if len(runs) > len(directs): warnings.warn("Row %d (%s) has differing numbers of" " direct & reflection runs. Skipped." % (entry["source"], entry["name"])) return None, None ds, fname = reduce_stitch( runs, directs, trim_trailing=self.trim_trailing, data_folder=self.data_folder, reduction_options=self.reduction_options, prefix=self.prefix, ) return ds, fname
def _reduce_row(self, entry): """ Process a single row using reduce_stitch Parameters ---------- entry : pandas.Series Spreadsheet row for this data set """ # Identify the runs to be used for reduction runs = run_list(entry, 'refl') directs = run_list(entry, 'directs') if self.verbose: fmt = "Reducing %s [%s]/[%s]" print(fmt % (entry['name'], ", ".join('%d' % r for r in runs), ", ".join('%d' % r for r in directs))) sys.stdout.flush() # keep progress updated if not runs: warnings.warn("Row %d (%s) has no reflection runs" % (entry['source'], entry['name'])) return None, None if not directs: warnings.warn("Row %d (%s) has no direct beam runs" % (entry['source'], entry['name'])) return None, None if len(runs) != len(directs): warnings.warn("Row %d (%s) has differing numbers of" " direct & refln runs" % (entry['source'], entry['name'])) return None, None ds, fname = reduce_stitch(runs, directs, **self.kwds) return ds, fname
def _reduce_row(self, entry): """ Process a single row using reduce_stitch Parameters ---------- entry : pandas.Series Spreadsheet row for this data set """ # Identify the runs to be used for reduction runs = run_list(entry, 'refl') directs = run_list(entry, 'directs') if self.verbose: fmt = "Reducing %s [%s]/[%s]" print(fmt % (entry['name'], ", ".join( '%d' % r for r in runs), ", ".join('%d' % r for r in directs))) sys.stdout.flush() # keep progress updated if not runs: warnings.warn("Row %d (%s) has no reflection runs. Skipped." % (entry['source'], entry['name'])) return None, None if not directs: warnings.warn("Row %d (%s) has no direct beam runs. Skipped." % (entry['source'], entry['name'])) return None, None if len(runs) > len(directs): warnings.warn("Row %d (%s) has differing numbers of" " direct & reflection runs. Skipped." % (entry['source'], entry['name'])) return None, None ds, fname = reduce_stitch(runs, directs, **self.kwds) return ds, fname
def test_smoke(self): # a quick smoke test to check that the reduction can occur a, fname = reduce_stitch([708, 709, 710], [711, 711, 711], data_folder=self.path, rebin_percent=2) a.save('test1.dat')
def test_smoke(self): # a quick smoke test to check that the reduction can occur a, fname = reduce_stitch([708, 709, 710], [711, 711, 711], data_folder=self.pth, rebin_percent=2) a.save('test1.dat')