Example #1
0
def main(data,gf,param,outfile):
  '''
  Nt: number of time steps
  Nx: number of positions
  Dx: spatial dimensions of coordinates and displacements 
  Ns: number of slip basis functions per slip direction
  Ds: number of slip directions
  Nv: number of fluidity basis functions
  total: number of state parameters (Ns*Ds + Nv + 2*Nx*Dx)

  Parameters
  ----------
    data: \ mask : (Nt,Nx) boolean array
          \ mean : (Nt,Nx,Dx) array
          \ covariance : (Nt,Nx,Dx,Dx) array
          \ metadata \ position : (Nx,Dx) array
                       time : (Nt,) array

    prior: \ mean : (total,) array
           \ covariance : (total,total) array

    gf: \ elastic : (Ns,Ds,Nx,Dx) array
        \ viscoelastic : (Ns,Ds,Dv,Nx,Dx) array
        \ metadata \ position : (Nx,Dx) array

    reg: \ regularization : (*,total) array

    params: user parameter dictionary

  Returns
  -------
    out: \ slip_integral \ mean : (Nt,Ns,Ds) array
                         \ uncertainty :(Nt,Ns,Ds) array
         \ slip \ mean : (Nt,Ns,Ds) array
                \ uncertainty : (Nt,Ns,Ds) array
         \ slip_derivative \ mean : (Nt,Ns,Ds) array
                           \ uncertainty : (Nt,Ns,Ds) array
         \ fluidity \ mean : (Nv,) array
                    \ uncertainty : (Nv,) array
         \ secular_velocity \ mean : (Nx,Dx) array
                            \ uncertainty : (Nx,Dx) array
         \ baseline_displacement \ mean : (Nx,Dx) array
                                 \ uncertainty : (Nx,Dx) array

  '''
  F = gf['slip'][...]
  G = gf['fluidity'][...]
  coseismic_times = np.array(param['coseismic_times'])
  afterslip_start_times = param['afterslip_start_times']
  afterslip_end_times = param['afterslip_end_times']
  afterslip_times = zip(afterslip_start_times,afterslip_end_times) 
  afterslip_times = np.array(afterslip_times)
  time = data['time'][:]

  slip_scale = 1.0 # meter
  relax_scale = 1.0 # year
  time_scale = np.std(time)
  time_shift = np.mean(time) # years
  disp_scale = 1.0 # meter
  # shift is different for each time series
  disp_shift = np.mean(data['mean'],0)

  # scale greens functions
  # F is originally in meters disp per meter slip
  F /= disp_scale/slip_scale
  # G is originally in meters/year disp per meter slip*fluidity 
  G /= (disp_scale/time_scale)/(slip_scale/relax_scale) 
  
  time -= time_shift
  time /= time_scale

  coseismic_times -= time_shift
  coseismic_times /= time_scale
  afterslip_times -= time_shift
  afterslip_times /= time_scale

  param['initial_slip_variance'] /= slip_scale**2
  param['fluidity_variance'] *= relax_scale**2
  param['secular_velocity_variance'] /= (disp_scale/time_scale)**2
  param['baseline_displacement_variance'] /= disp_scale**2

  # define slip functions and slip jacobian here
  slip_func,slip_jac = steps_and_ramps(coseismic_times,
                                       afterslip_times)

  Nst = len(coseismic_times) + len(afterslip_start_times)
  Ns,Ds,Nv,Nx,Dx = np.shape(G)
  Nt = len(time)
  
  # check for consistency between input
  assert data['mean'].shape == (Nt,Nx,Dx)
  assert data['variance'].shape == (Nt,Nx,Dx)
  assert F.shape == (Ns,Ds,Nx,Dx)
  assert G.shape == (Ns,Ds,Nv,Nx,Dx)
  p = state_parser(Nst,Ns,Ds,Nv,Nx,Dx)

  if param['solver'] == 'bvls':
    solver = modest.bvls
    upper_bound = 1e6*np.ones(p['total'])
    lower_bound = -1e6*np.ones(p['total'])

    # all inferred fluidities will be positive
    lower_bound[p['fluidity']] = 0

    # all inferred left lateral slip will be positive
    left_lateral_indices = np.array(p['slip'][:,:,0],copy=True)
    thrust_indices = np.array(p['slip'][:,:,1],copy=True)
    upper_bound[left_lateral_indices] = 0.0
    solver_args = (lower_bound,upper_bound)
    solver_kwargs = {}

  if param['solver'] == 'lstsq':
    solver = modest.lstsq
    solver_args = ()
    solver_kwargs = {}

  elif param['solver'] == 'lsmr':
    solver = modest.lsmr
    solver_args = ()
    solver_kwargs = {}

  elif param['solver'] == 'lgmres':
    solver = modest.lgmres
    solver_args = ()
    solver_kwargs = {'tol':1e-8,'maxiter':1000}

  elif param['solver'] == 'dgs':
    solver = modest.dgs
    solver_args = ()
    solver_kwargs = {}

  #fprior = prior.create_formatted_prior(param,p,slip_model='parameterized')
  Xprior,Cprior = prior.create_prior(param,p,slip_model='parameterized')   
  reg_matrix = reg.create_regularization(param,p,slip_model='parameterized')
  reg_rows = len(reg_matrix)  

  setup_output_file(outfile,p,
                    data['name'][...],
                    data['position'][...],
                    data['time'][...])
  
  Xprior,Cprior = modest.nonlin_lstsq(
                      regularization,
                      np.zeros(reg_rows),
                      Xprior, 
                      data_covariance=np.eye(reg_rows),
                      prior_covariance=Cprior,
                      system_args=(reg_matrix,),
                      jacobian=regularization_jacobian,
                      jacobian_args=(reg_matrix,),
                      maxitr=param['maxitr'],
                      solver=solver, 
                      solver_args=solver_args,
                      solver_kwargs=solver_kwargs,
                      LM_damping=True,
                      output=['solution','solution_covariance'])

  time_indices = range(Nt)
  block_time_indices = modest.misc.divide_list(time_indices,param['time_blocks'])
  for i in block_time_indices:
    outfile['data/mean'][i,...] = data['mean'][i,...]
    outfile['data/mask'][i,...] = data['mask'][i,...]
    outfile['data/covariance'][i,...] = data['variance'][i,...]
    di = data['mean'][i,...]
    di -= disp_shift
    di /= disp_scale

    di_mask = np.array(data['mask'][i,:],dtype=bool)
    # expand to three dimensions
    di_mask = np.repeat(di_mask[...,None],3,-1)
    di = di[~di_mask]
    Cdi = data['variance'][i,...]
    Cdi /= disp_scale**2
    Cdi = Cdi[~di_mask]

    Xprior,Cprior = modest.nonlin_lstsq(
                      observation,
                      di,
                      Xprior, 
                      data_covariance=Cdi,
                      prior_covariance=Cprior,
                      system_args=(time[i],F,G,p,slip_func,di_mask),
                      jacobian=observation_jacobian,
                      jacobian_args=(time[i],F,G,p,slip_func,slip_jac,di_mask),
                      solver=solver, 
                      solver_args=solver_args,
                      solver_kwargs=solver_kwargs,
                      maxitr=param['maxitr'],
                      LM_damping=True,
                      LM_param=1.0,
                      rtol=1e-2,
                      atol=1e-2,
                      output=['solution','solution_covariance'])

  post_mean_scaled,post_cov_scaled = Xprior,Cprior

  post_mean = np.copy(post_mean_scaled)
  post_mean[p['baseline_displacement']] *= disp_scale
  post_mean[p['baseline_displacement']] += disp_shift
  post_mean[p['secular_velocity']] *= (disp_scale/time_scale)  
  post_mean[p['slip']] *= slip_scale
  post_mean[p['fluidity']] /= relax_scale

  for i in range(Nt):
    outfile['state/all'][i,:] = post_mean
    outfile['state/baseline_displacement'][i,...] = post_mean[p['baseline_displacement']]   
    outfile['state/secular_velocity'][i,...] = post_mean[p['secular_velocity']]   
    outfile['state/slip'][i,...] = slip_func(post_mean[p['slip']],time[i])   
    outfile['state/slip_derivative'][i,...] = slip_func(post_mean[p['slip']],time[i],diff=1)
    outfile['state/fluidity'][i,...] = post_mean[p['fluidity']]   

  # compute predicted data
  logger.info('computing predicted data')
  error = 0.0
  count = 0
  for i in range(Nt):
    predicted = observation_t(post_mean_scaled,
                              time[i],
                              F,G,p,slip_func)
    # change back to meters
    predicted *= disp_scale    
    predicted += disp_shift
    residual = outfile['data/mean'][i,...] - predicted
    covariance = outfile['data/covariance'][i,...]
    data_mask = np.array(outfile['data/mask'][i,...],dtype=bool)
    error += L2(residual,covariance,data_mask) 
    count += np.sum(~data_mask)

    outfile['predicted/mean'][i,...] = predicted

    mask = np.zeros(p['total'])
    mask[p['secular_velocity']] = 1.0
    mask[p['baseline_displacement']] = 1.0
    mask_post_mean = post_mean_scaled*mask
    tectonic = observation_t(mask_post_mean,
                             time[i],
                             F,G,p,
                             slip_func)
    tectonic *= disp_scale
    tectonic += disp_shift
    outfile['tectonic/mean'][i,...] = tectonic

    mask = np.zeros(p['total'])
    mask[p['slip']] = 1.0
    mask_post_mean = post_mean_scaled*mask
    elastic = observation_t(mask_post_mean,
                            time[i],
                            F,G,p,
                            slip_func)

    elastic *= disp_scale
    outfile['elastic/mean'][i,...] = elastic 

    visc = (outfile['predicted/mean'][i,...] - 
            outfile['tectonic/mean'][i,...] - 
            outfile['elastic/mean'][i,...])
    outfile['viscous/mean'][i,...] = visc

  logger.info('total RMSE: %s' % np.sqrt(error/count))

  return 
Example #2
0
def main(data,gf,param,outfile):
  '''
  Nt: number of time steps
  Nx: number of positions
  Dx: spatial dimensions of coordinates and displacements 
  Ns: number of slip basis functions per slip direction
  Ds: number of slip directions
  Nv: number of fluidity basis functions
  total: number of state parameters (Ns*Ds + Nv + 2*Nx*Dx)

  Parameters
  ----------
    data: \ mask : (Nt,Nx) boolean array
          \ mean : (Nt,Nx,Dx) array
          \ covariance : (Nt,Nx,Dx,Dx) array
          \ metadata \ position : (Nx,Dx) array
                       time : (Nt,) array

    prior: \ mean : (total,) array
           \ covariance : (total,total) array

    gf: \ elastic : (Ns,Ds,Nx,Dx) array
        \ viscoelastic : (Ns,Ds,Dv,Nx,Dx) array
        \ metadata \ position : (Nx,Dx) array

    reg: \ regularization : (*,total) array

    params: user parameter dictionary

  Returns
  -------
    out: \ slip_integral \ mean : (Nt,Ns,Ds) array
                         \ uncertainty :(Nt,Ns,Ds) array
         \ slip \ mean : (Nt,Ns,Ds) array
                \ uncertainty : (Nt,Ns,Ds) array
         \ slip_derivative \ mean : (Nt,Ns,Ds) array
                           \ uncertainty : (Nt,Ns,Ds) array
         \ fluidity \ mean : (Nv,) array
                    \ uncertainty : (Nv,) array
         \ secular_velocity \ mean : (Nx,Dx) array
                            \ uncertainty : (Nx,Dx) array
         \ baseline_displacement \ mean : (Nx,Dx) array
                                 \ uncertainty : (Nx,Dx) array

  '''
  # set attributes of outfile
  outfile.attrs.update(param)
  outfile.attrs.update(gf.attrs)
  outfile.attrs.update(data.attrs)
  
  F = gf['slip'][...]
  G = gf['fluidity'][...]

  alpha = param['slip_acceleration_variance']
  jump_factor = param['jump_variance_factor']
  jump_times = param['jump_times']
  time = data['time'][:]

  Ns,Ds,Nv,Nx,Dx = np.shape(G)
  Nt = len(time)

  # check for consistency between input
  assert np.shape(data['mean']) == (Nt,Nx,Dx)
  assert np.shape(data['covariance']) == (Nt,Nx,Dx,Dx)
  assert np.shape(F) == (Ns,Ds,Nx,Dx)
  assert np.shape(G) == (Ns,Ds,Nv,Nx,Dx)
  p = state_parser(Ns,Ds,Nv,Nx,Dx)

  fprior = prior.create_formatted_prior(param,p)
  Xprior,Cprior = prior.create_prior(fprior,p)   

  freg = reg.create_formatted_regularization(param,p)
  reg_matrix = reg.create_regularization(freg,p)
  reg_rows = len(reg_matrix)  

  kalman = modest.KalmanFilter(
             Xprior,Cprior,
             observation_augmented,
             obs_args=(F,G,p,reg_matrix),
             ojac=observation_jacobian_augmented,
             ojac_args=(F,G,p,reg_matrix),
             trans=transition,
             trans_args=(p,),
             tjac=transition_jacobian,   
             tjac_args=(p,),
             pcov=process_covariance,
             pcov_args=(alpha,p),
             core=False,
             solver_kwargs={'maxitr':param['maxitr']},
             temp_file=param['history_file'])

  
  # prepare outfile file

  # copy over data file 
  outfile.create_dataset('data/mean',shape=np.shape(data['mean']))
  outfile.create_dataset('data/mask',shape=np.shape(data['mask']),dtype=bool)
  outfile.create_dataset('data/covariance',shape=np.shape(data['covariance']))
  outfile['data/name'] = data['name'][...]
  outfile['data/position'] = data['position'][...]
  outfile['data/time'] = data['time'][...]

  outfile.create_dataset('predicted/mean',shape=np.shape(data['mean']))
  outfile.create_dataset('predicted/covariance',shape=np.shape(data['covariance']))
  outfile['predicted/name'] = data['name'][...]
  outfile['predicted/mask'] = np.array(0.0*data['mask'][...],dtype=bool)
  outfile['predicted/position'] = data['position'][...]
  outfile['predicted/time'] = data['time'][...]

  outfile.create_dataset('tectonic/mean',shape=np.shape(data['mean']))
  outfile.create_dataset('tectonic/covariance',shape=np.shape(data['covariance']))
  outfile['tectonic/name'] = data['name'][...]
  outfile['tectonic/mask'] = np.array(0.0*data['mask'][...],dtype=bool)
  outfile['tectonic/position'] = data['position'][...]
  outfile['tectonic/time'] = data['time'][...]

  outfile.create_dataset('elastic/mean',shape=np.shape(data['mean']))
  outfile.create_dataset('elastic/covariance',shape=np.shape(data['covariance']))
  outfile['elastic/name'] = data['name'][...]
  outfile['elastic/mask'] = np.array(0.0*data['mask'][...],dtype=bool)
  outfile['elastic/position'] = data['position'][...]
  outfile['elastic/time'] = data['time'][...]

  outfile.create_dataset('viscous/mean',shape=np.shape(data['mean']))
  outfile.create_dataset('viscous/covariance',shape=np.shape(data['covariance']))
  outfile['viscous/name'] = data['name'][...]
  outfile['viscous/mask'] = np.array(0.0*data['mask'][...],dtype=bool)
  outfile['viscous/position'] = data['position'][...]
  outfile['viscous/time'] = data['time'][...]

  a = np.ones((Nt,Nx))
  b = np.eye(3)
  c = 1e-10*np.einsum('ij,kl',a,b)
  outfile['predicted/covariance'][...] = c
  outfile['tectonic/covariance'][...] = c
  outfile['elastic/covariance'][...] = c
  outfile['viscous/covariance'][...] = c

  outfile.create_dataset('state/all',shape=(Nt,p['total']))
  for k in ['baseline_displacement',
            'secular_velocity',
            'slip_integral',
            'slip',
            'slip_derivative',
            'fluidity']:
    outfile.create_dataset('state/' + k,shape=(Nt,)+np.shape(p[k]))

  outfile['state/time'] = data['time'][...]

  logger.info('starting Kalman filter iterations')
  for i in range(Nt):
    outfile['data/mean'][i,...] = data['mean'][i,...]
    outfile['data/mask'][i,...] = data['mask'][i,...]
    outfile['data/covariance'][i,...] = data['covariance'][i,...]
    di = flat_data(data['mean'][i,...])
    di = np.hstack((di,np.zeros(reg_rows)))
    di_mask = np.array(data['mask'][i,:],dtype=bool)
    # expand to three dimensions
    di_mask = np.repeat(di_mask[:,None],3,1)
    di_mask = flat_data(di_mask)
    di_mask = np.hstack((di_mask,np.zeros(reg_rows,dtype=bool)))
    Cdi = flat_cov(data['covariance'][i,...])
    Cdi = scipy.linalg.block_diag(Cdi,np.eye(reg_rows))
    if np.all(time[i] < jump_times):
      kalman.pcov_args = (0.0*alpha,p)
      kalman.next(di,Cdi,time[i],mask=di_mask)
      kalman.pcov_args = (alpha,p)

    elif (i != 0) & np.any((time[i] > jump_times) & (time[i-1] <= jump_times)):
      logger.info('increasing slip variance by %sx when updating '
                  'from t=%s to t=%s' % (jump_factor,time[i-1],time[i]))
      kalman.pcov_args = (jump_factor*alpha,p)
      kalman.next(di,Cdi,time[i],mask=di_mask)
      kalman.pcov_args = (alpha,p)

    else:   
      kalman.next(di,Cdi,time[i],mask=di_mask)

    print(kalman.get_posterior()[0][p['fluidity']])

  logger.info('starting Rauch-Tung-Striebel smoothing')
  kalman.smooth()
  for i in range(Nt):
    outfile['state/all'][i,:] = kalman.history['smooth'][i,:]
    for k in ['baseline_displacement',
              'secular_velocity',
              'slip_integral',
              'slip',
              'slip_derivative',
              'fluidity']:
      outfile['state/' + k][i,...] = np.array(kalman.history['smooth'])[i,p[k]]

  # compute predicted data
  logger.info('computing predicted data')
  error = 0.0
  for i in range(Nt):
    predicted = observation(outfile['state/all'][i],
                            time[i],
                            F,G,p,flatten=False)
    residual = outfile['data/mean'][i,...] - predicted
    covariance = outfile['data/covariance'][i,...]
    data_mask = np.array(outfile['data/mask'][i,...],dtype=bool)
    error += RMSE(residual,covariance,data_mask) 

    outfile['predicted/mean'][i,...] = predicted

    mask = np.zeros(p['total'])
    mask[p['secular_velocity']] = 1.0
    mask[p['baseline_displacement']] = 1.0
    state = outfile['state/all'][i]*mask
    outfile['tectonic/mean'][i,...] = observation(
                                        state,
                                        time[i],
                                        F,G,p,
                                        flatten=False)

    mask = np.zeros(p['total'])
    mask[p['slip']] = 1.0
    state = outfile['state/all'][i]*mask
    outfile['elastic/mean'][i,...] = observation(
                                       state,
                                       time[i],
                                       F,G,p,
                                       flatten=False)
    
    visc = (outfile['predicted/mean'][i,...] - 
            outfile['tectonic/mean'][i,...] - 
            outfile['elastic/mean'][i,...])
    outfile['viscous/mean'][i,...] = visc

  logger.info('total RMSE: %s' % error)

  return