}, outfile, sort_keys=True, indent=4, ensure_ascii=False) np.savetxt('mix_scaled_pWorse_init.txt', X[:2]) # first two plays for later init. bounds = np.array(31 * [[-1., 1.]]) soln = CovarianceEstimate(X, y, bounds=bounds, alpha=10.) # sig_test = np.zeros(31) # sig_test[-1] = 2.6 # soln.model.f_path(sig_test) [obj_set, sigma_set] = soln.solve(plot=True) # # pick the best solution obj = obj_set.min(axis=0) sigma = sigma_set[obj_set.argmin(axis=0), :] print obj, sigma # # load bounds # from numpy import loadtxt # bounds = loadtxt("ego_bounds.txt", comments="#", delimiter=",", unpack=False) # # # store sigma for simulation # # TODO: need to specify file name based on settings, e.g., optimization algorithm and input data source (best player?) file_address = 'pWorse_bfgs_sigma_alpha' + str(soln.alpha) + '.json' with open(file_address, 'wb') as f:
sample_size = 100 num_ini_guess = 2 alpha = 10.0 soln = CovarianceEstimate(X, y, bounds=bounds, xbounds=xbounds, alpha=alpha, sample_size=sample_size, num_ini_guess=num_ini_guess, initial_guess=initial_guess, l_INI=l_INI_10[:(n_trajectory-2)]) # x_temp =np.random.normal(initial_guess, scale=0.1, size=(1,31)) # # x_temp = np.ones((31,))*10.0 f0 = soln.model.obj(initial_guess, alpha=alpha, l_INI=l_INI_10[:(n_trajectory-2)]) print f0 # sig_test = np.zeros(31) # sig_test[-1] = 2.6 # soln.model.f_path(sig_test) [obj_set, sigma_set] = soln.solve(plot=False) # # pick the best solution obj = obj_set.min(axis=0) sigma = sigma_set[obj_set.argmin(axis=0), :] print obj, sigma # # load bounds # from numpy import loadtxt # bounds = loadtxt("ego_bounds.txt", comments="#", delimiter=",", unpack=False) # # # store sigma for simulation # # TODO: need to specify file name based on settings, e.g., optimization algorithm and input data source (best player?) file_address = 'p3_bfgs_sigma_alpha'+str(soln.alpha)+'_0220_sample100_aroundx1_first71.json' # x0: thurston optimal for 31 plays
sample_size = 100 num_ini_guess = 2 alpha = 10.0 soln = CovarianceEstimate(X, y, bounds=bounds, xbounds=xbounds, alpha=alpha, sample_size=sample_size, num_ini_guess=num_ini_guess, initial_guess=initial_guess, l_INI=l_INI_10[:(n_trajectory-2)]) # x_temp =np.random.normal(initial_guess, scale=0.1, size=(1,31)) # # x_temp = np.ones((31,))*10.0 f0 = soln.model.obj(initial_guess, alpha=alpha, l_INI=l_INI_10[:(n_trajectory-2)]) print f0 # sig_test = np.zeros(31) # sig_test[-1] = 2.6 # soln.model.f_path(sig_test) [obj_set, sigma_set] = soln.solve(plot=False) # # pick the best solution obj = obj_set.min(axis=0) sigma = sigma_set[obj_set.argmin(axis=0), :] print obj, sigma # # load bounds # from numpy import loadtxt # bounds = loadtxt("ego_bounds.txt", comments="#", delimiter=",", unpack=False) # # # store sigma for simulation # # TODO: need to specify file name based on settings, e.g., optimization algorithm and input data source (best player?) file_address = 'p2_bfgs_sigma_alpha'+str(soln.alpha)+'_0813_sample100_aroundx1_first12.json' # x0: thurston optimal for 31 plays
pre = Preprocess(pca_model='../eco_full_pca.pkl', all_dat='../all_games.pkl') # pre = Preprocess() # pre.get_json('alluser_control.json') # uncomment this to create the pkl file needed!! # pre.train_pca() X, y = pre.ready_player_one(3) from sklearn.preprocessing import StandardScaler, MinMaxScaler # scale = StandardScaler() scale = MinMaxScaler((-1., 1.)) X = scale.fit_transform(X) # bounds = np.array(30 * [[-1., 1.]]) # # get sigma estimate that maximizes the sum of expected improvements soln = CovarianceEstimate(X, y, bounds=bounds) [obj_set, sigma_set] = soln.solve() # # pick the best solution obj = obj_set.min(axis=0) sigma = sigma_set[obj_set.argmin(axis=0), :] print obj, sigma # # load bounds # from numpy import loadtxt # bounds = loadtxt("ego_bounds.txt", comments="#", delimiter=",", unpack=False) # # # store sigma for simulation # # TODO: need to specify file name based on settings, e.g., optimization algorithm and input data source (best player?) file_address = 'p3_slsqp_sigma_oldICA.json' with open(file_address, 'w') as f:
with open('pWorse_range_transform.json', 'wb') as outfile: json.dump({'range':scale.scale_.tolist(), 'min':scale.min_.tolist()}, outfile, sort_keys=True, indent=4, ensure_ascii=False) with open('pWorse_ICA_transform.json', 'wb') as outfile: json.dump({'mix':pre.pca.mixing_.tolist(), 'unmix':pre.pca.components_.tolist(), 'mean':pre.pca.mean_.tolist()}, outfile, sort_keys=True, indent=4, ensure_ascii=False) np.savetxt('mix_scaled_pWorse_init.txt', X[:2]) # first two plays for later init. bounds = np.array(31*[[-1., 1.]]) soln = CovarianceEstimate(X, y, bounds=bounds, alpha=10.) # sig_test = np.zeros(31) # sig_test[-1] = 2.6 # soln.model.f_path(sig_test) [obj_set, sigma_set] = soln.solve(plot=True) # # pick the best solution obj = obj_set.min(axis=0) sigma = sigma_set[obj_set.argmin(axis=0), :] print obj, sigma # # load bounds # from numpy import loadtxt # bounds = loadtxt("ego_bounds.txt", comments="#", delimiter=",", unpack=False) # # # store sigma for simulation # # TODO: need to specify file name based on settings, e.g., optimization algorithm and input data source (best player?) file_address = 'pWorse_bfgs_sigma_alpha'+str(soln.alpha)+'.json' with open(file_address, 'wb') as f:
pre = Preprocess(pca_model='../eco_full_pca.pkl', all_dat='../all_games.pkl') # pre = Preprocess() # pre.get_json('alluser_control.json') # uncomment this to create the pkl file needed!! # pre.train_pca() X, y = pre.ready_player_one(2) from sklearn.preprocessing import StandardScaler, MinMaxScaler # scale = StandardScaler() scale = MinMaxScaler((-1., 1.)) X = scale.fit_transform(X) # bounds = np.array(30*[[-1., 1.]]) # # get sigma estimate that maximizes the sum of expected improvements soln = CovarianceEstimate(X, y, bounds=bounds) [obj_set, sigma_set] = soln.solve() # # pick the best solution obj = obj_set.min(axis=0) sigma = sigma_set[obj_set.argmin(axis=0), :] print obj, sigma # # load bounds # from numpy import loadtxt # bounds = loadtxt("ego_bounds.txt", comments="#", delimiter=",", unpack=False) # # # store sigma for simulation # # TODO: need to specify file name based on settings, e.g., optimization algorithm and input data source (best player?) file_address = 'p3_slsqp_sigma_oldICA.json' with open(file_address, 'w') as f: