def test_rankone():
    x1 = np.random.standard_normal(100)
    x2 = np.random.standard_normal(50)
    fm = FM.factored_matrix(np.multiply.outer(x1, x2), min_singular=1.e-2, affine_offset=0)
    fm.X
    fm.copy()

    U = np.random.standard_normal((50, 10))
    V = np.random.standard_normal((100, 20))
    nt.assert_raises(ValueError, FM.factored_matrix, X, -1)

    fm.linear_map(U)
    fm.affine_map(U)
    fm.adjoint_map(V)
def test_class():

    for shape in [(100, 50), (50, 100)]:
        n, p = shape
        X = np.random.standard_normal((n, p))
        fm = FM.factored_matrix(X, min_singular=1.e-2, affine_offset=0)
        fm.X
        fm.copy()

        U = np.random.standard_normal((p, 10))
        V = np.random.standard_normal((n, 20))
        nt.assert_raises(ValueError, FM.factored_matrix, X, -1)

        fm.linear_map(U)
        fm.affine_map(U)
        fm.adjoint_map(V)
Example #3
0
def test_class():

    for shape in [(100, 50), (50, 100)]:
        n, p = shape
        X = np.random.standard_normal((n,p))
        fm = FM.factored_matrix(X, min_singular=1.e-2, affine_offset=0)
        fm.X
        fm.copy()

        U = np.random.standard_normal((p, 10))
        V = np.random.standard_normal((n, 20))
        nt.assert_raises(ValueError, FM.factored_matrix, X, -1)

        fm.linear_map(U)
        fm.affine_map(U)
        fm.adjoint_map(V)
def test_rankone():
    x1 = np.random.standard_normal(100)
    x2 = np.random.standard_normal(50)
    fm = FM.factored_matrix(np.multiply.outer(x1, x2),
                            min_singular=1.e-2,
                            affine_offset=0)
    fm.X
    fm.copy()

    U = np.random.standard_normal((50, 10))
    V = np.random.standard_normal((100, 20))
    nt.assert_raises(ValueError, FM.factored_matrix, X, -1)

    fm.linear_map(U)
    fm.affine_map(U)
    fm.adjoint_map(V)
def test_zero():

    fm = FM.factored_matrix(np.zeros((100, 50)))
    fm.X
Example #6
0
def test_zero():

    fm = FM.factored_matrix(np.zeros((100, 50)))
    fm.X