Example #1
0
def test_group_lasso2(l1=1, **control):
    """
    fits a LASSO as a group lasso with 
    all 2norms are one dimensional
    """
    X = np.load("X.npy")
    Y = np.load('Y.npy')
    n, p = X.shape
    XtX = np.dot(X.T, X)
    M = np.linalg.eigvalsh(XtX).max()  #/ (1*len(Y))

    def e(i, n):
        z = np.zeros(n)
        z[i] = 1.
        return z

    p1 = lasso.gengrad((X, Y), L=M)
    p1.assign_penalty(l1=l1 * n)

    Dv = [(e(i, p), l1 * n) for i in range(p)]
    p2 = group.group_lasso((X, Dv, Y))
    p2.dualcontrol['tol'] = 1.0e-10

    t1 = time.time()
    opt1 = regreg.FISTA(p1)
    opt1.fit(tol=control['tol'], max_its=control['max_its'])
    t2 = time.time()
    ts1 = t2 - t1

    t1 = time.time()
    opt2 = regreg.FISTA(p2)
    opt2.debug = True
    opt2.fit(tol=control['tol'], max_its=control['max_its'])
    t2 = time.time()
    ts3 = t2 - t1

    p3 = glasso.generalized_lasso((X, np.identity(p), Y), L=M)
    p3.assign_penalty(l1=l1 * n)
    p3.dualcontrol['tol'] = 1.0e-10
    t1 = time.time()
    opt3 = regreg.FISTA(p3)
    opt3.fit(tol=control['tol'], max_its=control['max_its'])
    t2 = time.time()
    ts3 = t2 - t1

    beta1, _ = opt1.output
    beta2, _ = opt2.output
    beta3, _ = opt3.output
    X = np.arange(n)

    nose.tools.assert_true(
        (np.fabs(beta1 - beta2).sum() / np.fabs(beta1).sum()) < 5.0e-04)
    nose.tools.assert_true(
        (np.fabs(beta1 - beta3).sum() / np.fabs(beta1).sum()) < 5.0e-04)
Example #2
0
def test_group_lasso_approximator1(l1=0.1, **control):

    Y = np.load('Y.npy')
    n = Y.shape[0]

    def e(i, n):
        z = np.zeros(n)
        z[i] = 1.
        return z

    Dv = [(e(i, n), l1 * n) for i in range(n)]

    p1 = group.group_approximator((Dv, Y))

    p2 = lasso.gengrad((np.identity(n), Y))
    p2.assign_penalty(l1=l1 * n)

    p3 = signal_approximator.signal_approximator((np.identity(n), Y))
    p3.assign_penalty(l1=l1 * n)

    t1 = time.time()
    opt1 = regreg.FISTA(p1)
    opt1.debug = True
    opt1.fit(tol=control['tol'], max_its=control['max_its'])
    t2 = time.time()
    ts1 = t2 - t1

    t1 = time.time()
    opt2 = regreg.FISTA(p2)
    opt2.fit(tol=control['tol'], max_its=control['max_its'])
    t2 = time.time()
    ts2 = t2 - t1

    t1 = time.time()
    opt3 = regreg.FISTA(p3)
    opt3.fit(tol=control['tol'], max_its=control['max_its'])
    t2 = time.time()
    ts3 = t2 - t1

    beta1, _ = opt1.output
    beta2, _ = opt2.output
    beta3, _ = opt3.output
    X = np.arange(n)

    nose.tools.assert_true(
        (np.fabs(beta1 - beta3).sum() / np.fabs(beta1).sum()) < 1.0e-04)
    nose.tools.assert_true(
        (np.fabs(beta1 - beta2).sum() / np.fabs(beta1).sum()) < 1.0e-04)
Example #3
0
def test_FISTA(X=None, Y=None, l1=5., control=control):

    if X or Y is None:
        X = np.load('X.npy')
        Y = np.load('Y.npy')

    XtX = np.dot(X.T, X)
    M = np.linalg.eigvalsh(XtX).max()  #/ (1*len(Y))

    p3 = lasso.gengrad((X, Y), L=M)
    p3.assign_penalty(l1=l1 * X.shape[0])

    t1 = time.time()
    opt3 = regreg.FISTA(p3)
    opt3.fit(tol=control['tol'], max_its=control['max_its'])
    beta3 = opt3.problem.coefs
    t2 = time.time()
    ts3 = t2 - t1
Example #4
0
def test_FISTA(X=None,Y=None,l1=5., control=control):

    if X or Y is None:
        X = np.load('X.npy')
        Y = np.load('Y.npy')

    XtX = np.dot(X.T, X)
    M = np.linalg.eigvalsh(XtX).max() #/ (1*len(Y))

    p3 = lasso.gengrad((X, Y),L=M)
    p3.assign_penalty(l1=l1*X.shape[0])

    t1 = time.time()
    opt3 = regreg.FISTA(p3)
    opt3.fit(tol=control['tol'], max_its=control['max_its'])
    beta3 = opt3.problem.coefs
    t2 = time.time()
    ts3 = t2-t1
Example #5
0
def test_lasso(X=None, Y=None, l1=5., control=control):

    if X or Y is None:
        X = np.load('X.npy')
        Y = np.load('Y.npy')

    XtX = np.dot(X.T, X)
    M = np.linalg.eigvalsh(XtX).max()  #/ (1*len(Y))
    print M
    Y += np.dot(X[:, :5], 10 * np.ones(5))

    p1 = lasso.cwpath((X, Y))
    p1.assign_penalty(l1=l1 * X.shape[0])

    p2 = lasso.gengrad((X, Y), L=M)
    p2.assign_penalty(l1=l1 * X.shape[0])

    p3 = lasso.gengrad((X, Y), L=M)
    p3.assign_penalty(l1=l1 * X.shape[0])

    p4 = lasso.gengrad_smooth((X, Y), L=M)
    p4.assign_penalty(l1=l1 * X.shape[0])

    t1 = time.time()
    opt1 = regreg.CWPath(p1)
    opt1.fit(tol=1e-8, max_its=control['max_its'])
    beta1 = opt1.problem.coefs
    t2 = time.time()
    ts1 = t2 - t1

    t1 = time.time()
    opt2 = regreg.ISTA(p2)
    opt2.fit(tol=control['tol'],
             max_its=control['max_its'],
             backtrack=control['backtrack'],
             alpha=1.25)
    beta2 = opt2.problem.coefs
    t2 = time.time()
    ts2 = t2 - t1
    time.sleep(0.5)
    t1 = time.time()
    opt3 = regreg.FISTA(p3)
    opt3.fit(tol=control['tol'],
             max_its=control['max_its'],
             backtrack=control['backtrack'],
             alpha=1.25)
    beta3 = opt3.problem.coefs
    t2 = time.time()
    ts3 = t2 - t1

    epsvec = np.exp(np.arange(4, -16, -1))
    t1 = time.time()
    opt4 = regreg.NesterovSmooth(p4)
    for eps in epsvec:
        f_s = opt4.fit(tol=control['tol'], max_its=50, epsilon=eps)


#    f_s = opt4.fit( tol=control['tol'], max_its=control['max_its'],epsilon=0.1)
    beta4 = opt4.problem.coefs
    t2 = time.time()
    ts4 = t2 - t1

    print beta1
    print beta2
    print beta3
    print p2.obj(beta1), p2.obj(beta2), p3.obj(beta3)
    nose.tools.assert_true(
        (np.fabs(beta1 - beta3).sum() / np.fabs(beta1).sum() <= 1.0e-04))
    """
    print p3.obj(beta1), p3.obj(beta2), p3.obj(beta3)
    """
    print "Times", ts1, ts2, ts3, ts4
Example #6
0
def test_lasso(X=None,Y=None,l1=5., control=control):

    if X or Y is None:
        X = np.load('X.npy')
        Y = np.load('Y.npy')

    XtX = np.dot(X.T, X)
    M = np.linalg.eigvalsh(XtX).max() #/ (1*len(Y))
    print M
    Y += np.dot(X[:,:5], 10 * np.ones(5))

    p1 = lasso.cwpath((X, Y))
    p1.assign_penalty(l1=l1*X.shape[0])

    p2 = lasso.gengrad((X, Y),L=M)
    p2.assign_penalty(l1=l1*X.shape[0])

    p3 = lasso.gengrad((X, Y),L=M)
    p3.assign_penalty(l1=l1*X.shape[0])

    p4 = lasso.gengrad_smooth((X, Y),L=M)
    p4.assign_penalty(l1=l1*X.shape[0])

    t1 = time.time()
    opt1 = regreg.CWPath(p1)
    opt1.fit(tol=1e-8, max_its=control['max_its'])
    beta1 = opt1.problem.coefs
    t2 = time.time()
    ts1 = t2-t1

    t1 = time.time()
    opt2 = regreg.ISTA(p2)
    opt2.fit(tol=control['tol'], max_its=control['max_its'],backtrack=control['backtrack'],alpha=1.25)
    beta2 = opt2.problem.coefs
    t2 = time.time()
    ts2 = t2-t1
    time.sleep(0.5)
    t1 = time.time()
    opt3 = regreg.FISTA(p3)
    opt3.fit(tol=control['tol'], max_its=control['max_its'],backtrack=control['backtrack'],alpha=1.25)
    beta3 = opt3.problem.coefs
    t2 = time.time()
    ts3 = t2-t1

    epsvec = np.exp(np.arange(4,-16,-1))
    t1 = time.time()
    opt4 = regreg.NesterovSmooth(p4)
    for eps in epsvec:
        f_s = opt4.fit( tol=control['tol'], max_its=50,epsilon=eps)
#    f_s = opt4.fit( tol=control['tol'], max_its=control['max_its'],epsilon=0.1)
    beta4 = opt4.problem.coefs
    t2 = time.time()
    ts4 = t2-t1

    print beta1
    print beta2
    print beta3
    print p2.obj(beta1), p2.obj(beta2), p3.obj(beta3)
    nose.tools.assert_true((np.fabs(beta1-beta3).sum() / np.fabs(beta1).sum() <= 1.0e-04))



    """
    print p3.obj(beta1), p3.obj(beta2), p3.obj(beta3)
    """
    print "Times", ts1, ts2, ts3, ts4