Example #1
0
def run_svm_model_factory():

    ##### YOUR CODE HERE
    return rel_ext.experiment(splits,
                              model_factory=lambda: SVC(kernel='linear'),
                              train_split='train',
                              test_split='dev',
                              featurizers=featurizers)
Example #2
0
def test_experiment(featurizer, vectorize, corpus, kb):
    dataset = rel_ext.Dataset(corpus, kb)
    splits = dataset.build_splits(
        split_names=['tiny_train', 'tiny_dev', 'rest'],
        split_fracs=[0.05, 0.05, 0.90],
        seed=1)
    results = rel_ext.experiment(splits,
                                 train_split='tiny_train',
                                 test_split='tiny_dev',
                                 featurizers=[featurizer],
                                 vectorize=vectorize,
                                 verbose=False)
Example #3
0
def run_svm_model_factory():
    from sklearn.svm import SVC
    ##### YOUR CODE HERE
    model_factory = lambda: SVC(kernel='linear')

    svc_results = rel_ext.experiment(splits,
                                     train_split='train',
                                     test_split='dev',
                                     featurizers=featurizers,
                                     model_factory=model_factory,
                                     verbose=True)

    return svc_results
Example #4
0
def run_svm_model_factory():

    ##### YOUR CODE HERE
    from sklearn.svm import SVC
    glove_results = rel_ext.experiment(
        splits,
        train_split='train',
        test_split='dev',
        model_factory=(lambda: SVC(kernel='linear', max_iter=2)),
        featurizers=[glove_middle_featurizer],
        vectorize=False,  # Crucial for this featurizer!
        verbose=True)

    return glove_results
Example #5
0

# In[10]:

featurizers = [simple_bag_of_words_featurizer]

# In[11]:

model_factory = lambda: LogisticRegression(fit_intercept=True,
                                           solver='liblinear')

# In[12]:

baseline_results = rel_ext.experiment(splits,
                                      train_split='train',
                                      test_split='dev',
                                      featurizers=featurizers,
                                      model_factory=model_factory,
                                      verbose=True)

# Studying model weights might yield insights:

# In[13]:

rel_ext.examine_model_weights(baseline_results)

# ### Distributed representations
#
# This simple baseline sums the GloVe vector representations for all of the words in the "middle" span and feeds those representations into the standard `LogisticRegression`-based `model_factory`. The crucial parameter that enables this is `vectorize=False`. This essentially says to `rel_ext.experiment` that your featurizer or your model will do the work of turning examples into vectors; in that case, `rel_ext.experiment` just organizes these representations by relation type.

# In[14]:
Example #6
0

# In[11]:

featurizers = [simple_bag_of_words_featurizer]

# In[12]:

model_factory = lambda: LogisticRegression(fit_intercept=True,
                                           solver='liblinear')

# In[13]:

baseline_results = rel_ext.experiment(splits,
                                      train_split='train',
                                      test_split='dev',
                                      featurizers=featurizers,
                                      model_factory=model_factory,
                                      verbose=True)

# Studying model weights might yield insights:

# In[14]:

rel_ext.examine_model_weights(baseline_results)

# ### Distributed representations
#
# This simple baseline sums the GloVe vector representations for all of the words in the "middle" span and feeds those representations into the standard `LogisticRegression`-based `model_factory`. The crucial parameter that enables this is `vectorize=False`. This essentially says to `rel_ext.experiment` that your featurizer or your model will do the work of turning examples into vectors; in that case, `rel_ext.experiment` just organizes these representations by relation type.

# In[15]: