def test_Probability_of_failure():
    stress = Weibull_Distribution(alpha=40, beta=4)
    strength = Lognormal_Distribution(mu=1.8, sigma=0.25, gamma=50)
    result = Probability_of_failure(stress=stress,
                                    strength=strength,
                                    print_results=False,
                                    show_distribution_plot=False)
    assert_allclose(result, 0.02155359226336879, rtol=rtol, atol=atol)
Example #2
0
def test_stress_strength():
    stress = Weibull_Distribution(alpha=40, beta=4)
    strength = Lognormal_Distribution(mu=1.8, sigma=0.25, gamma=50)
    result = stress_strength(stress=stress,
                             strength=strength,
                             print_results=False,
                             show_plot=False)
    assert_allclose(result, 0.021559141113795574, rtol=rtol, atol=atol)
 def __update_params(_, self):
     value1 = self.s0.val
     value2 = self.s1.val
     value3 = self.s2.val
     if self.name == 'Weibull':
         dist = Weibull_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Loglogistic':
         dist = Loglogistic_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Gamma':
         dist = Gamma_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Loglogistic':
         dist = Loglogistic_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Lognormal':
         dist = Lognormal_Distribution(mu=value1, sigma=value2, gamma=value3)
     elif self.name == 'Beta':
         dist = Beta_Distribution(alpha=value1, beta=value2)
     elif self.name == 'Normal':
         dist = Normal_Distribution(mu=value1, sigma=value2)
     elif self.name == 'Exponential':
         dist = Exponential_Distribution(Lambda=value1, gamma=value2)
     else:
         raise ValueError(str(self.name + ' is an unknown distribution name'))
     plt.sca(self.ax_pdf)
     plt.cla()
     dist.PDF()
     plt.title('PDF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_cdf)
     plt.cla()
     dist.CDF()
     plt.title('CDF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_sf)
     plt.cla()
     dist.SF()
     plt.title('SF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_hf)
     plt.cla()
     dist.HF()
     plt.title('HF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_chf)
     plt.cla()
     dist.CHF()
     plt.title('CHF')
     plt.xlabel('')
     plt.ylabel('')
     plt.subplots_adjust(left=0.07, right=0.98, top=0.9, bottom=0.25, wspace=0.18, hspace=0.30)
     plt.suptitle(dist.param_title_long, fontsize=15)
     plt.draw()
Example #4
0
def test_Fit_Lognormal_3P():
    dist = Lognormal_Distribution(mu=1,sigma=0.5, gamma=500)
    rawdata = dist.random_samples(20, seed=5)
    data = make_right_censored_data(data=rawdata, threshold=dist.mean)
    fit = Fit_Lognormal_3P(failures=data.failures, right_censored=data.right_censored, show_probability_plot=False, print_results=False)
    assert_allclose(fit.mu, 6.2074393111799395,rtol=rtol,atol=atol)
    assert_allclose(fit.sigma, 0.0018428336205591194,rtol=rtol,atol=atol)
    assert_allclose(fit.gamma, 6.216971087828216,rtol=rtol,atol=atol)
    assert_allclose(fit.AICc, 54.382774526710904,rtol=rtol,atol=atol)
    assert_allclose(fit.Cov_mu_sigma, 4.689716427080205e-08,rtol=rtol,atol=atol)
    assert_allclose(fit.loglik, -23.441387263355452,rtol=rtol,atol=atol)
Example #5
0
def test_Fit_Lognormal_2P():
    dist = Lognormal_Distribution(mu=1,sigma=0.5)
    rawdata = dist.random_samples(20, seed=5)
    data = make_right_censored_data(data=rawdata, threshold=dist.mean)
    fit = Fit_Lognormal_2P(failures=data.failures, right_censored=data.right_censored, show_probability_plot=False, print_results=False)
    assert_allclose(fit.mu, 0.9494189618970151,rtol=rtol,atol=atol)
    assert_allclose(fit.sigma, 0.4267323807168996,rtol=rtol,atol=atol)
    assert_allclose(fit.gamma, 0,rtol=rtol,atol=atol)
    assert_allclose(fit.AICc, 49.69392320890684,rtol=rtol,atol=atol)
    assert_allclose(fit.Cov_mu_sigma, 0.0025054526707355687,rtol=rtol,atol=atol)
    assert_allclose(fit.loglik, -22.494020427982832,rtol=rtol,atol=atol)
def test_Lognormal_Distribution():
    dist = Lognormal_Distribution(mu=2, sigma=0.8, gamma=10)
    assert_allclose(dist.mean, 20.175674306073336, rtol=rtol, atol=atol)
    assert_allclose(dist.standard_deviation, 9.634600550542682, rtol=rtol, atol=atol)
    assert_allclose(dist.variance, 92.82552776851736, rtol=rtol, atol=atol)
    assert_allclose(dist.skewness, 3.689292296091298, rtol=rtol, atol=atol)
    assert_allclose(dist.kurtosis, 34.36765343083244, rtol=rtol, atol=atol)
    assert dist.param_title_long == 'Lognormal Distribution (μ=2,σ=0.8,γ=10)'
    assert_allclose(dist.quantile(0.2), 13.7685978648453116, rtol=rtol, atol=atol)
    assert_allclose(dist.inverse_SF(q=0.7), 14.857284757111664, rtol=rtol, atol=atol)
    assert_allclose(dist.mean_residual_life(20), 9.143537277214762, rtol=rtol, atol=atol)
    xvals = [dist.gamma - 1, dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)]
    assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.0, 0.006748891633682291, 0.028994071579561444, 0.08276575111567319, 0.01064970121764939, 0.0007011277158027589, 4.807498012690953e-05], rtol=rtol, atol=atol)
    assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.0, 0.001, 0.01, 0.1, 0.9, 0.99, 0.999], rtol=rtol, atol=atol)
    assert_allclose(dist.SF(xvals=xvals, show_plot=False), [1.0, 0.999, 0.99, 0.9, 0.1, 0.01, 0.001], rtol=rtol, atol=atol)
    assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.0, 0.006755647280963254, 0.029286940989456004, 0.09196194568408134, 0.10649701217649381, 0.07011277158027589, 0.04807498012690954], rtol=rtol, atol=atol)
    assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [-0.0, 0.0010005003335835344, 0.01005033585350145, 0.1053605156578264, 2.302585092994045, 4.605170185988091, 6.907755278982137], rtol=rtol, atol=atol)
Example #7
0
def test_Fit_Lognormal_3P():
    dist = Lognormal_Distribution(mu=1, sigma=0.5, gamma=500)
    rawdata = dist.random_samples(20, seed=5)
    data = make_right_censored_data(data=rawdata, threshold=dist.mean)

    MLE = Fit_Lognormal_3P(failures=data.failures,
                           right_censored=data.right_censored,
                           method='MLE',
                           show_probability_plot=False,
                           print_results=False)
    assert_allclose(MLE.mu, 0.5608879850309877, rtol=rtol, atol=atol)
    assert_allclose(MLE.sigma, 0.7396271168422542, rtol=rtol, atol=atol)
    assert_allclose(MLE.gamma, 500.79568888668746, rtol=rtol, atol=atol)
    assert_allclose(MLE.AICc, 52.067948767151364, rtol=rtol, atol=atol)
    assert_allclose(MLE.BIC, 53.555145587813335, rtol=rtol, atol=atol)
    assert_allclose(MLE.loglik, -22.283974383575682, rtol=rtol, atol=atol)
    assert_allclose(MLE.AD, 46.95299490218758, rtol=rtol, atol=atol)
    assert_allclose(MLE.Cov_mu_sigma,
                    0.007500058692172027,
                    rtol=rtol,
                    atol=atol)

    LS = Fit_Lognormal_3P(failures=data.failures,
                          right_censored=data.right_censored,
                          method='LS',
                          show_probability_plot=False,
                          print_results=False)
    assert_allclose(LS.mu, 0.976088004545536, rtol=rtol, atol=atol)
    assert_allclose(LS.sigma, 0.4340076639560259, rtol=rtol, atol=atol)
    assert_allclose(LS.gamma, 499.9229609896007, rtol=rtol, atol=atol)
    assert_allclose(LS.AICc, 52.60637160294965, rtol=rtol, atol=atol)
    assert_allclose(LS.BIC, 54.09356842361162, rtol=rtol, atol=atol)
    assert_allclose(LS.loglik, -22.553185801474825, rtol=rtol, atol=atol)
    assert_allclose(LS.AD, 46.93164376455629, rtol=rtol, atol=atol)
    assert_allclose(LS.Cov_mu_sigma,
                    0.0025619981036203664,
                    rtol=rtol,
                    atol=atol)
Example #8
0
def test_Fit_Lognormal_2P():
    dist = Lognormal_Distribution(mu=1, sigma=0.5)
    rawdata = dist.random_samples(20, seed=5)
    data = make_right_censored_data(data=rawdata, threshold=dist.mean)

    MLE = Fit_Lognormal_2P(failures=data.failures,
                           right_censored=data.right_censored,
                           method='MLE',
                           show_probability_plot=False,
                           print_results=False)
    assert_allclose(MLE.mu, 0.9494190246173423, rtol=rtol, atol=atol)
    assert_allclose(MLE.sigma, 0.4267323457212804, rtol=rtol, atol=atol)
    assert_allclose(MLE.gamma, 0, rtol=rtol, atol=atol)
    assert_allclose(MLE.AICc, 49.69392320890687, rtol=rtol, atol=atol)
    assert_allclose(MLE.BIC, 50.979505403073674, rtol=rtol, atol=atol)
    assert_allclose(MLE.loglik, -22.494020427982846, rtol=rtol, atol=atol)
    assert_allclose(MLE.AD, 46.91678130009629, rtol=rtol, atol=atol)
    assert_allclose(MLE.Cov_mu_sigma,
                    0.002505454567167978,
                    rtol=rtol,
                    atol=atol)

    LS = Fit_Lognormal_2P(failures=data.failures,
                          right_censored=data.right_censored,
                          method='LS',
                          show_probability_plot=False,
                          print_results=False)
    assert_allclose(LS.mu, 0.9427890879489974, rtol=rtol, atol=atol)
    assert_allclose(LS.sigma, 0.4475312141445822, rtol=rtol, atol=atol)
    assert_allclose(LS.gamma, 0, rtol=rtol, atol=atol)
    assert_allclose(LS.AICc, 49.757609068995194, rtol=rtol, atol=atol)
    assert_allclose(LS.BIC, 51.043191263162, rtol=rtol, atol=atol)
    assert_allclose(LS.loglik, -22.52586335802701, rtol=rtol, atol=atol)
    assert_allclose(LS.AD, 46.93509652892565, rtol=rtol, atol=atol)
    assert_allclose(LS.Cov_mu_sigma,
                    0.0025640250120794526,
                    rtol=rtol,
                    atol=atol)
Example #9
0
    def __init__(self,
                 distribution,
                 include_location_shifted=True,
                 show_plot=True,
                 print_results=True,
                 number_of_distributions_to_show=3):
        # ensure the input is a distribution object
        if type(distribution) not in [
                Weibull_Distribution, Normal_Distribution,
                Lognormal_Distribution, Exponential_Distribution,
                Gamma_Distribution, Beta_Distribution
        ]:
            raise ValueError(
                'distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___'
            )

        # sample the CDF from 0.001 to 0.999. These samples will be used to fit all other distributions.
        RVS = distribution.quantile(
            np.linspace(0.001, 0.999, 698)
        )  # 698 samples is the ideal number for the points to align. Evidenced using plot_points.

        # filter out negative values
        RVS_filtered = []
        negative_values_error = False
        for item in RVS:
            if item > 0:
                RVS_filtered.append(item)
            else:
                negative_values_error = True
        if negative_values_error is True:
            print(
                'WARNING: The input distribution has non-negligible area for x<0. Samples from this region have been discarded to enable other distributions to be fitted.'
            )

        fitted_results = Fit_Everything(
            failures=RVS_filtered,
            print_results=False,
            show_probability_plot=False,
            show_histogram_plot=False,
            show_PP_plot=False
        )  # fit all distributions to the filtered samples
        ranked_distributions = list(fitted_results.results.index.values)
        ranked_distributions.remove(
            distribution.name2
        )  # removes the fitted version of the original distribution

        ranked_distributions_objects = []
        ranked_distributions_labels = []
        sigfig = 2
        for dist_name in ranked_distributions:
            if dist_name == 'Weibull_2P':
                ranked_distributions_objects.append(
                    Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha,
                                         beta=fitted_results.Weibull_2P_beta))
                ranked_distributions_labels.append(
                    str('Weibull_2P (α=' +
                        str(round(fitted_results.Weibull_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Weibull_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Gamma_2P':
                ranked_distributions_objects.append(
                    Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha,
                                       beta=fitted_results.Gamma_2P_beta))
                ranked_distributions_labels.append(
                    str('Gamma_2P (α=' +
                        str(round(fitted_results.Gamma_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Gamma_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Normal_2P':
                ranked_distributions_objects.append(
                    Normal_Distribution(mu=fitted_results.Normal_2P_mu,
                                        sigma=fitted_results.Normal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Normal_2P (μ=' +
                        str(round(fitted_results.Normal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Normal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Lognormal_2P':
                ranked_distributions_objects.append(
                    Lognormal_Distribution(
                        mu=fitted_results.Lognormal_2P_mu,
                        sigma=fitted_results.Lognormal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Lognormal_2P (μ=' +
                        str(round(fitted_results.Lognormal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Lognormal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Exponential_1P':
                ranked_distributions_objects.append(
                    Exponential_Distribution(
                        Lambda=fitted_results.Expon_1P_lambda))
                ranked_distributions_labels.append(
                    str('Exponential_1P (lambda=' +
                        str(round(fitted_results.Expon_1P_lambda, sigfig)) +
                        ')'))
            elif dist_name == 'Beta_2P':
                ranked_distributions_objects.append(
                    Beta_Distribution(alpha=fitted_results.Beta_2P_alpha,
                                      beta=fitted_results.Beta_2P_beta))
                ranked_distributions_labels.append(
                    str('Beta_2P (α=' +
                        str(round(fitted_results.Beta_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Beta_2P_beta, sigfig)) + ')'))

            if include_location_shifted is True:
                if dist_name == 'Weibull_3P':
                    ranked_distributions_objects.append(
                        Weibull_Distribution(
                            alpha=fitted_results.Weibull_3P_alpha,
                            beta=fitted_results.Weibull_3P_beta,
                            gamma=fitted_results.Weibull_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Weibull_3P (α=' + str(
                            round(fitted_results.Weibull_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Weibull_3P_beta,
                                      sigfig)) + ',γ=' +
                            str(round(fitted_results.Weibull_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Gamma_3P':
                    ranked_distributions_objects.append(
                        Gamma_Distribution(
                            alpha=fitted_results.Gamma_3P_alpha,
                            beta=fitted_results.Gamma_3P_beta,
                            gamma=fitted_results.Gamma_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Gamma_3P (α=' +
                            str(round(fitted_results.Gamma_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Gamma_3P_beta, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Gamma_3P_gamma, sigfig)) +
                            ')'))
                elif dist_name == 'Lognormal_3P':
                    ranked_distributions_objects.append(
                        Lognormal_Distribution(
                            mu=fitted_results.Lognormal_3P_mu,
                            sigma=fitted_results.Lognormal_3P_sigma,
                            gamma=fitted_results.Lognormal_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Lognormal_3P (μ=' + str(
                            round(fitted_results.Lognormal_3P_mu, sigfig)) +
                            ',σ=' + str(
                                round(fitted_results.Lognormal_3P_sigma,
                                      sigfig)) + ',γ=' +
                            str(
                                round(fitted_results.Lognormal_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Exponential_2P':
                    ranked_distributions_objects.append(
                        Exponential_Distribution(
                            Lambda=fitted_results.Expon_1P_lambda,
                            gamma=fitted_results.Expon_2P_gamma))
                    ranked_distributions_labels.append(
                        str('Exponential_1P (lambda=' + str(
                            round(fitted_results.Expon_1P_lambda, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Expon_2P_gamma, sigfig)) +
                            ')'))

        number_of_distributions_fitted = len(ranked_distributions_objects)
        self.results = ranked_distributions_objects
        self.most_similar_distribution = ranked_distributions_objects[0]
        if print_results is True:
            print('The input distribution was:')
            print(distribution.param_title_long)
            if number_of_distributions_fitted < number_of_distributions_to_show:
                number_of_distributions_to_show = number_of_distributions_fitted
            print('\nThe top', number_of_distributions_to_show,
                  'most similar distributions are:')
            counter = 0
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                dist = ranked_distributions_objects[counter]
                print(dist.param_title_long)
                counter += 1

        if show_plot is True:
            plt.figure(figsize=(14, 6))
            plt.suptitle(
                str('Plot of similar distributions to ' +
                    distribution.param_title_long))
            counter = 0
            xlower = distribution.quantile(0.001)
            xupper = distribution.quantile(0.999)
            x_delta = xupper - xlower
            plt.subplot(121)
            distribution.PDF(label=str('Input distribution [' +
                                       distribution.name2 + ']'),
                             linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].PDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('PDF')
            counter = 0
            plt.subplot(122)
            distribution.CDF(label=str('Input distribution [' +
                                       distribution.name2 + ']'),
                             linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].CDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('CDF')
            plt.subplots_adjust(left=0.08, right=0.95)
            plt.show()
 def __update_distribution(name, self):
     self.name = name
     if self.name == 'Weibull':
         dist = Weibull_Distribution(alpha=100, beta=2, gamma=0)
         param_names = ['Alpha', 'Beta', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=25, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Gamma':
         dist = Gamma_Distribution(alpha=100, beta=5, gamma=0)
         param_names = ['Alpha', 'Beta', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=25, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Loglogistic':
         dist = Loglogistic_Distribution(alpha=100, beta=8, gamma=0)
         param_names = ['Alpha', 'Beta', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=50, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Lognormal':
         dist = Lognormal_Distribution(mu=2.5, sigma=0.5, gamma=0)
         param_names = ['Mu', 'Sigma', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0, valmax=5, valinit=dist.mu)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=2, valinit=dist.sigma)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Normal':
         dist = Normal_Distribution(mu=0, sigma=10)
         param_names = ['Mu', 'Sigma', '']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=-100, valmax=100, valinit=dist.mu)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=20, valinit=dist.sigma)
         try:  # clear the slider axis if it exists
             self.ax2.remove()  # this will destroy the axes
         except KeyError:
             pass
     elif self.name == 'Exponential':
         dist = Exponential_Distribution(Lambda=1, gamma=0)
         param_names = ['Lambda', 'Gamma', '']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.001, valmax=5, valinit=dist.Lambda)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0, valmax=500, valinit=dist.gamma)
         try:  # clear the slider axis if it exists
             self.ax2.remove()  # this will destroy the axes
         except KeyError:
             pass
     elif self.name == 'Beta':
         dist = Beta_Distribution(alpha=2, beta=2)
         param_names = ['Alpha', 'Beta', '']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.01, valmax=5, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=5, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             self.ax2.remove()  # this will destroy the axes
         except KeyError:
             pass
     else:
         raise ValueError(str(self.name + ' is an unknown distribution name'))
     plt.suptitle(dist.param_title_long, fontsize=15)
     distribution_explorer.__update_params(None, self)
     distribution_explorer.__interactive(self)
     plt.draw()
Example #11
0
    def __init__(self,
                 distribution=None,
                 include_location_shifted=True,
                 show_plot=True,
                 print_results=True,
                 monte_carlo_trials=1000,
                 number_of_distributions_to_show=3):
        if type(distribution) not in [
                Weibull_Distribution, Normal_Distribution,
                Lognormal_Distribution, Exponential_Distribution,
                Gamma_Distribution, Beta_Distribution
        ]:
            raise ValueError(
                'distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___'
            )
        if monte_carlo_trials < 100:
            print(
                'WARNING: Using less than 100 monte carlo trials will lead to extremely inaccurate results. The number of monte carlo trials has been changed to 100 to ensure accuracy.'
            )
            monte_carlo_trials = 100
        elif monte_carlo_trials >= 100 and monte_carlo_trials < 1000:
            print(
                'WARNING: Using less than 1000 monte carlo trials will lead to inaccurate results.'
            )
        if monte_carlo_trials > 10000:
            print(
                'The recommended number of monte carlo trials is 1000. Using over 10000 may take a long time to calculate.'
            )

        RVS = distribution.random_samples(
            number_of_samples=monte_carlo_trials
        )  # draw random samples from the original distribution
        # filter out negative values
        RVS_filtered = []
        negative_values_error = False
        for item in RVS:
            if item > 0:
                RVS_filtered.append(item)
            else:
                negative_values_error = True
        if negative_values_error is True:
            print(
                'WARNING: The input distribution has non-negligible area for x<0. Monte carlo samples from this region have been discarded to enable other distributions to be fitted.'
            )

        fitted_results = Fit_Everything(
            failures=RVS_filtered,
            print_results=False,
            show_probability_plot=False,
            show_histogram_plot=False,
            show_PP_plot=False
        )  # fit all distributions to the filtered samples
        ranked_distributions = list(fitted_results.results.index.values)
        ranked_distributions.remove(
            distribution.name2
        )  # removes the fitted version of the original distribution

        ranked_distributions_objects = []
        ranked_distributions_labels = []
        sigfig = 2
        for dist_name in ranked_distributions:
            if dist_name == 'Weibull_2P':
                ranked_distributions_objects.append(
                    Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha,
                                         beta=fitted_results.Weibull_2P_beta))
                ranked_distributions_labels.append(
                    str('Weibull_2P (α=' +
                        str(round(fitted_results.Weibull_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Weibull_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Gamma_2P':
                ranked_distributions_objects.append(
                    Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha,
                                       beta=fitted_results.Gamma_2P_beta))
                ranked_distributions_labels.append(
                    str('Gamma_2P (α=' +
                        str(round(fitted_results.Gamma_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Gamma_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Normal_2P':
                ranked_distributions_objects.append(
                    Normal_Distribution(mu=fitted_results.Normal_2P_mu,
                                        sigma=fitted_results.Normal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Normal_2P (μ=' +
                        str(round(fitted_results.Normal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Normal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Lognormal_2P':
                ranked_distributions_objects.append(
                    Lognormal_Distribution(
                        mu=fitted_results.Lognormal_2P_mu,
                        sigma=fitted_results.Lognormal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Lognormal_2P (μ=' +
                        str(round(fitted_results.Lognormal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Lognormal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Exponential_1P':
                ranked_distributions_objects.append(
                    Exponential_Distribution(
                        Lambda=fitted_results.Expon_1P_lambda))
                ranked_distributions_labels.append(
                    str('Exponential_1P (lambda=' +
                        str(round(fitted_results.Expon_1P_lambda, sigfig)) +
                        ')'))
            elif dist_name == 'Beta_2P':
                ranked_distributions_objects.append(
                    Beta_Distribution(alpha=fitted_results.Beta_2P_alpha,
                                      beta=fitted_results.Beta_2P_beta))
                ranked_distributions_labels.append(
                    str('Beta_2P (α=' +
                        str(round(fitted_results.Beta_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Beta_2P_beta, sigfig)) + ')'))

            if include_location_shifted is True:
                if dist_name == 'Weibull_3P':
                    ranked_distributions_objects.append(
                        Weibull_Distribution(
                            alpha=fitted_results.Weibull_3P_alpha,
                            beta=fitted_results.Weibull_3P_beta,
                            gamma=fitted_results.Weibull_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Weibull_3P (α=' + str(
                            round(fitted_results.Weibull_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Weibull_3P_beta,
                                      sigfig)) + ',γ=' +
                            str(round(fitted_results.Weibull_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Gamma_3P':
                    ranked_distributions_objects.append(
                        Gamma_Distribution(
                            alpha=fitted_results.Gamma_3P_alpha,
                            beta=fitted_results.Gamma_3P_beta,
                            gamma=fitted_results.Gamma_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Gamma_3P (α=' +
                            str(round(fitted_results.Gamma_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Gamma_3P_beta, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Gamma_3P_gamma, sigfig)) +
                            ')'))
                elif dist_name == 'Lognormal_3P':
                    ranked_distributions_objects.append(
                        Lognormal_Distribution(
                            mu=fitted_results.Lognormal_3P_mu,
                            sigma=fitted_results.Lognormal_3P_sigma,
                            gamma=fitted_results.Lognormal_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Lognormal_3P (μ=' + str(
                            round(fitted_results.Lognormal_3P_mu, sigfig)) +
                            ',σ=' + str(
                                round(fitted_results.Lognormal_3P_sigma,
                                      sigfig)) + ',γ=' +
                            str(
                                round(fitted_results.Lognormal_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Exponential_2P':
                    ranked_distributions_objects.append(
                        Exponential_Distribution(
                            Lambda=fitted_results.Expon_1P_lambda,
                            gamma=fitted_results.Expon_2P_gamma))
                    ranked_distributions_labels.append(
                        str('Exponential_1P (lambda=' + str(
                            round(fitted_results.Expon_1P_lambda, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Expon_2P_gamma, sigfig)) +
                            ')'))

        number_of_distributions_fitted = len(ranked_distributions_objects)
        self.results = ranked_distributions_objects
        self.most_similar_distribution = ranked_distributions_objects[0]
        if print_results is True:
            print('The input distribution was:')
            print(distribution.param_title_long)
            if number_of_distributions_fitted < number_of_distributions_to_show:
                number_of_distributions_to_show = number_of_distributions_fitted
            print('\nThe top', number_of_distributions_to_show,
                  'most similar distributions are:')
            counter = 0
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                dist = ranked_distributions_objects[counter]
                print(dist.param_title_long)
                counter += 1

        if show_plot is True:
            plt.figure(figsize=(14, 6))
            plt.suptitle(
                str('Plot of similar distributions to ' +
                    distribution.param_title_long))
            counter = 0
            xlower = distribution.quantile(0.001)
            xupper = distribution.quantile(0.999)
            x_delta = xupper - xlower
            plt.subplot(121)
            distribution.PDF(label='Input distribution', linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].PDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('PDF')
            counter = 0
            plt.subplot(122)
            distribution.CDF(label='Input distribution', linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].CDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('CDF')
            plt.subplots_adjust(left=0.08, right=0.95)
            plt.show()
def HistogramPLOT_all(data, month, year):
    #Initiate
    Situation = []
    mon = [
        'January', 'Febuary', 'March', 'April', 'May', 'June', 'July',
        'August', 'September', 'October', 'November', 'December'
    ]
    #Get just Full day data
    logicF = (data["isFULL"].apply(lambda x: x) == (1))
    data01 = data[logicF].copy()
    data01.fillna(method='ffill', inplace=True)

    logicY = (data01["DateTime"].apply(lambda x: x.year) == (year))
    data01 = data01[logicY].copy()

    fig = plt.figure(figsize=(24, 18), dpi=80, facecolor='w', edgecolor='r')
    #Plotting 12 graph
    xvals = np.linspace(0, 30, 1000)
    for i in range(month):
        ax = plt.subplot2grid((4, 3), (int(np.floor(i / 3)), int(i % 3)))
        logic = (data01["DateTime"].apply(lambda x: x.month)) == (i + 1)
        ws = data01['WS95'][logic]
        ws = ws + 0.0001
        failures = []
        censored = []
        threshold = 30
        for item in ws:
            if item > threshold:
                censored.append(threshold)
            else:
                failures.append(item)
        xvals = np.linspace(0, 30, 1000)
        print(ws.shape)
        if (np.sum(logic) != 0):
            ax.hist(ws, bins=30, normed=True)
            hist, edge = np.histogram(np.array(ws),
                                      bins=1000,
                                      range=(0, 30),
                                      normed=True)
            wb2 = Fit_Weibull_2P(failures=failures,
                                 show_probability_plot=False,
                                 print_results=False)
            wb3 = Fit_Weibull_3P(failures=failures,
                                 show_probability_plot=False,
                                 print_results=False)
            gm2 = Fit_Gamma_2P(failures=failures,
                               show_probability_plot=False,
                               print_results=False)
            gm3 = Fit_Gamma_3P(failures=failures,
                               show_probability_plot=False,
                               print_results=False)
            ln2 = Fit_Lognormal_2P(failures=failures,
                                   show_probability_plot=False,
                                   print_results=False)
            wbm = Fit_Weibull_Mixture(failures=failures,
                                      right_censored=censored,
                                      show_plot=False,
                                      print_results=False)

            wb2_pdf = Weibull_Distribution(alpha=wb2.alpha, beta=wb2.beta).PDF(
                xvals=xvals, show_plot=True, label='Weibull_2P')
            wb3_pdf = Weibull_Distribution(alpha=wb3.alpha,
                                           beta=wb3.beta,
                                           gamma=wb3.gamma).PDF(
                                               xvals=xvals,
                                               show_plot=True,
                                               label='Weibull_3P')
            gm2_pdf = Gamma_Distribution(alpha=gm2.alpha,
                                         beta=gm2.beta).PDF(xvals=xvals,
                                                            show_plot=True,
                                                            label='Gamma_2P')
            gm3_pdf = Gamma_Distribution(alpha=gm3.alpha,
                                         beta=gm3.beta,
                                         gamma=gm3.gamma).PDF(xvals=xvals,
                                                              show_plot=True,
                                                              label='Gamma_3P')
            ln2_pdf = Lognormal_Distribution(mu=ln2.mu, sigma=ln2.sigma).PDF(
                xvals=xvals, show_plot=True, label='Lognormal_2P')

            part1_pdf = Weibull_Distribution(alpha=wbm.alpha_1,
                                             beta=wbm.beta_1).PDF(
                                                 xvals=xvals, show_plot=False)
            part2_pdf = Weibull_Distribution(alpha=wbm.alpha_2,
                                             beta=wbm.beta_2).PDF(
                                                 xvals=xvals, show_plot=False)
            Mixture_PDF = part1_pdf * wbm.proportion_1 + part2_pdf * wbm.proportion_2
            ax.plot(xvals, Mixture_PDF, label='Weibull_Mixture')
        ax.legend()
        ax.set_ylim(0, 0.16)
        ax.set_xlim(0, 30)
        ax.set_xticks([0, 5, 10, 15, 20, 25, 30])
        ax.tick_params(axis="x", labelsize=20)
        ax.tick_params(axis="y", labelsize=20)
        ax.set_title('{}'.format(mon[i]), fontweight='bold', size=20)
    plt.tight_layout()
    plt.show()