Example #1
0
    def __init__(self, num_class=1):
        self.conv1_1 = rm.Conv2d(64, padding=1, filter=3)
        self.bn1_1 = rm.BatchNormalize(mode='feature')
        self.conv1_2 = rm.Conv2d(64, padding=1, filter=3)
        self.bn1_2 = rm.BatchNormalize(mode='feature')
        self.conv2_1 = rm.Conv2d(128, padding=1, filter=3)
        self.bn2_1 = rm.BatchNormalize(mode='feature')
        self.conv2_2 = rm.Conv2d(128, padding=1, filter=3)
        self.bn2_2 = rm.BatchNormalize(mode='feature')
        self.conv3_1 = rm.Conv2d(256, padding=1, filter=3)
        self.bn3_1 = rm.BatchNormalize(mode='feature')
        self.conv3_2 = rm.Conv2d(256, padding=1, filter=3)
        self.bn3_2 = rm.BatchNormalize(mode='feature')
        self.conv4_1 = rm.Conv2d(512, padding=1, filter=3)
        self.bn4_1 = rm.BatchNormalize(mode='feature')
        self.conv4_2 = rm.Conv2d(512, padding=1, filter=3)
        self.bn4_2 = rm.BatchNormalize(mode='feature')
        self.conv5_1 = rm.Conv2d(1024, padding=1, filter=3)
        self.bn5_1 = rm.BatchNormalize(mode='feature')
        self.conv5_2 = rm.Conv2d(1024, padding=1, filter=3)
        self.bn5_2 = rm.BatchNormalize(mode='feature')

        self.deconv1 = rm.Deconv2d(512, stride=2)
        self.conv6_1 = rm.Conv2d(256, padding=1)
        self.conv6_2 = rm.Conv2d(256, padding=1)
        self.deconv2 = rm.Deconv2d(256, stride=2)
        self.conv7_1 = rm.Conv2d(128, padding=1)
        self.conv7_2 = rm.Conv2d(128, padding=1)
        self.deconv3 = rm.Deconv2d(128, stride=2)
        self.conv8_1 = rm.Conv2d(64, padding=1)
        self.conv8_2 = rm.Conv2d(64, padding=1)
        self.deconv4 = rm.Deconv2d(64, stride=2)
        self.conv9 = rm.Conv2d(num_class, filter=1)
 def __init__(self,
              input_shape,
              output_shape,
              units=10,
              depth=3,
              growth_rate=12,
              dropout=False,
              initializer=rm.utility.initializer.Gaussian(std=0.3),
              active=rm.tanh):
     self.input_shape = input_shape
     self.output_shape = output_shape
     self.units = units
     self.depth = depth
     self.dropout = dropout
     self.active = active
     parameters = []
     add_units = units
     for _ in range(depth - 1):
         add_units += growth_rate
         parameters.append(rm.BatchNormalize())
         parameters.append(rm.Dense(add_units, initializer=initializer))
     self.hidden = rm.Sequential(parameters)
     self.input_batch = rm.BatchNormalize()
     self.input = rm.Dense(units)
     self.multi_output = False
     if isinstance(self.output_shape, tuple):
         self.multi_output = True
         parameters = []
         for _ in range(output_shape[0]):
             parameters.append(rm.BatchNormalize())
             parameters.append(
                 rm.Dense(output_shape[1], initializer=initializer))
         self.output = rm.Sequential(parameters)
     else:
         self.output = rm.Dense(output_shape)
Example #3
0
    def __init__(self, num_class):
        self.base1 = rm.Sequential([
            InceptionV2Stem(),
            InceptionV2BlockA([64, 48, 64, 64, 96, 32]),
            InceptionV2BlockA(),
            InceptionV2BlockA(),
            InceptionV2BlockB(),
            InceptionV2BlockC([192, 128, 192, 128, 192, 192]),
            InceptionV2BlockC(),
            InceptionV2BlockC(),
            InceptionV2BlockC()])

        self.aux1 = rm.Sequential([
            rm.AveragePool2d(filter=5, stride=3),
            rm.Conv2d(128, filter=1),
            rm.BatchNormalize(mode='feature'),
            rm.Relu(),
            rm.Conv2d(768, filter=1),
            rm.BatchNormalize(mode='feature'),
            rm.Relu(),
            rm.Flatten(),
            rm.Dense(num_class)])

        self.base2 = rm.Sequential([
            InceptionV2BlockD(),
            InceptionV2BlockE(),
            InceptionV2BlockE(),
            rm.AveragePool2d(filter=8),
            rm.Flatten()])

        self.aux2 = rm.Dense(num_class)
Example #4
0
def conv_block(growth_rate):
    return rm.Sequential([
        rm.BatchNormalize(epsilon=0.001, mode='feature'),
        rm.Relu(),
        rm.Conv2d(growth_rate * 4, 1, padding=0),
        rm.BatchNormalize(epsilon=0.001, mode='feature'),
        rm.Relu(),
        rm.Conv2d(growth_rate, 3, padding=1),
    ])
Example #5
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(planes, stride)
     self.bn1 = rm.BatchNormalize(mode='feature')
     self.relu = rm.Relu()
     self.conv2 = conv3x3(planes)
     self.bn2 = rm.BatchNormalize(mode='feature')
     self.downsample = downsample
     self.stride = stride
Example #6
0
    def __init__(self, channels=[64, 96, 384]):
        self.conv1_reduced = rm.Conv2d(channels[0], filter=1)
        self.batch_norm1_reduced = rm.BatchNormalize(mode='feature')
        self.conv1_1 = rm.Conv2d(channels[1], filter=3, padding=1)
        self.batch_norm1_1 = rm.BatchNormalize(mode='feature')
        self.conv1_2 = rm.Conv2d(channels[1], filter=3, stride=2)
        self.batch_norm1_2 = rm.BatchNormalize(mode='feature')

        self.conv2 = rm.Conv2d(channels[2], filter=3, stride=2)
        self.batch_norm2 = rm.BatchNormalize(mode='feature')
Example #7
0
    def __init__(self):
        # k, l, m, n
        # 192, 224, 256, 384
        self.conv1 = rm.Conv2d(384, filter=3, stride=2)
        self.batch_norm1 = rm.BatchNormalize(mode='feature')

        self.conv2_red = rm.Conv2d(192, filter=1)
        self.batch_norm2_red = rm.BatchNormalize(mode='feature')
        self.conv2_1 = rm.Conv2d(224, filter=3, padding=1)
        self.batch_norm2_1 = rm.BatchNormalize(mode='feature')
        self.conv2_2 = rm.Conv2d(256, filter=3, stride=2)
        self.batch_norm2_2 = rm.BatchNormalize(mode='feature')
Example #8
0
    def __init__(self, channels=[192, 320, 192, 192]):
        self.conv1_reduced = rm.Conv2d(channels[0], filter=1)
        self.batch_norm1_reduced = rm.BatchNormalize(mode='feature')
        self.conv1 = rm.Conv2d(channels[1], filter=3, stride=2)
        self.batch_norm1 = rm.BatchNormalize(mode='feature')

        self.conv2_reduced = rm.Conv2d(channels[2], filter=1)
        self.batch_norm2_reduced = rm.BatchNormalize(mode='feature')
        self.conv2_1 = rm.Conv2d(channels[3], filter=3, padding=1)
        self.batch_norm2_1 = rm.BatchNormalize(mode='feature')
        self.conv2_2 = rm.Conv2d(channels[3], filter=3, stride=2)
        self.batch_norm2_2 = rm.BatchNormalize(mode='feature')
Example #9
0
def test_batch_normalize_featuremap(a):
    layer = rm.BatchNormalize(mode=BATCH_NORMALIZE_FEATUREMAP, momentum=0.1)

    set_cuda_active(True)

    g1 = Variable(a)

    for _ in range(10):
        g3 = layer(g1)
    g3.to_cpu()

    layer.set_models(inference=True)
    g4 = layer(g1)
    layer.set_models(inference=False)

    set_cuda_active(False)
    layer._mov_mean = 0
    layer._mov_std = 0
    for _ in range(10):
        c3 = layer(g1)

    layer.set_models(inference=True)
    c4 = layer(g1)
    layer.set_models(inference=False)

    close(g3, c3)
    close(g4, c4)
    close(g3.attrs._m.new_array(), c3.attrs._m)
    close(g3.attrs._v.new_array(), c3.attrs._v)
    close(g3.attrs._mov_m.new_array(), c3.attrs._mov_m)
    close(g3.attrs._mov_v.new_array(), c3.attrs._mov_v)
Example #10
0
 def denseblock(
     self,
     dim_v=8,
     dim_h=8,
     input_channels=10,
     dropout=False,
     out_ch=0.5,
 ):
     parameters = []
     c = input_channels
     print('-> {}'.format(c))
     for _ in range(self.depth):
         c += self.growth_rate
         print('Batch Normalize')
         parameters.append(rm.BatchNormalize())
         print(' Conv2d > {}x{} {}ch'.format(dim_v, dim_h,
                                             self.growth_rate))
         parameters.append(
             rm.Conv2d(self.growth_rate, filter=3, padding=(1, 1)))
         if self.dropout:
             print(' Dropout')
     c = int(c*out_ch) if isinstance(out_ch, float) \
         else out_ch
     print('*Conv2d > {}x{} {}ch'.format(dim_v, dim_h, c))
     parameters.append(rm.Conv2d(c, filter=1))
     if self.dropout:
         print(' Dropout')
     print(' Average Pooling')
     print('<- {}'.format(c))
     return parameters, c
Example #11
0
 def __init__(self, num_classes, block, layers, cardinality):
     self.inplanes = 128
     self.cardinality = cardinality
     super(ResNeXt, self).__init__()
     self.conv1 = rm.Conv2d(64,
                            filter=7,
                            stride=2,
                            padding=3,
                            ignore_bias=True)
     self.bn1 = rm.BatchNormalize(epsilon=0.00001, mode='feature')
     self.relu = rm.Relu()
     self.maxpool = rm.MaxPool2d(filter=3, stride=2, padding=1)
     self.layer1 = self._make_layer(block,
                                    128,
                                    layers[0],
                                    stride=1,
                                    cardinality=self.cardinality)
     self.layer2 = self._make_layer(block,
                                    256,
                                    layers[1],
                                    stride=2,
                                    cardinality=self.cardinality)
     self.layer3 = self._make_layer(block,
                                    512,
                                    layers[2],
                                    stride=2,
                                    cardinality=self.cardinality)
     self.layer4 = self._make_layer(block,
                                    1024,
                                    layers[3],
                                    stride=2,
                                    cardinality=self.cardinality)
     self.flat = rm.Flatten()
     self.fc = rm.Dense(num_classes)
Example #12
0
def transition_layer(growth_rate):
    return rm.Sequential([
        rm.BatchNormalize(epsilon=0.001, mode='feature'),
        rm.Relu(),
        rm.Conv2d(growth_rate, filter=1, padding=0, stride=1),
        rm.AveragePool2d(filter=2, stride=2)
    ])
Example #13
0
    def _gen_model(self):
        N = self.batch

        input_shape = self.arch['input_shape']
        output_shape = self.arch['output_shape']
        if 'debug' in self.arch.keys():
            debug = self.arch['debug']
        else:
            debug = False

        self.batch_input_shape = self.get_shape(N, input_shape)
        self.batch_output_shape = self.get_shape(N, output_shape)
        depth = self.arch['depth']
        unit = self.arch['unit']

        units = np.ones(depth + 1) * unit
        _unit = np.prod(output_shape)
        units[-1] = _unit
        units = units.astype('int')
        layer = [rm.Flatten()]
        for _unit in units:
            layer.append(rm.BatchNormalize())
            layer.append(rm.Relu())
            layer.append(rm.Dense(_unit))
        #layer = layer[:-1] + [rm.Dropout()] + [layer[-1]]
        self.fcnn = rm.Sequential(layer)

        if debug:
            x = np.zeros(self.batch_input_shape)
            for _layer in layer:
                x = _layer(x)
                print(x.shape, str(_layer.__class__).split('.')[-1])
            x = rm.reshape(x, self.batch_output_shape)
            print(x.shape)
 def __init__(
         self,
         latent_dim = 10,
         output_shape = (28, 28), 
         batch_normal = False,
         dropout = False,
         min_channels = 16,
     ):
     self.batch_normal = batch_normal
     self.latent_dim = latent_dim
     self.output_shape = output_shape
     self.dropout = dropout
     self.min_channels = min_channels
     print('--- Generator Network ---')
     parameters = []
     print_params = []
     dim = output_shape[0]
     channels = self.min_channels
     while dim%2 == 0 and dim > 2:
         parameters.append(rm.Deconv2d(
             channel=channels, stride=2, filter=2))
         if batch_normal:
             parameters.append(rm.BatchNormalize())
         dim = dim // 2
         print_params.append([dim, channels])
         channels *= 2
     if dim%2 == 1:
         parameters.append(rm.Deconv2d(
             channel=channels, stride=2, filter=3))
         if batch_normal:
             parameters.append(rm.BatchNormalize())
         dim = (dim - 1) // 2
         print_params.append([dim, channels])
         channels *= 2
     parameters.reverse()
     print_params.reverse()
     print('Dense {}x{}x{} & Reshape'.format(dim, dim,channels))
     self.channels = channels
     self.transform = rm.Dense(channels*1*dim*dim)
     for item in print_params:
         print('Deconv2d to {}x{} {}ch '.format(
             item[0], item[0], item[1]))
     self.hidden = rm.Sequential(parameters)
     self.output = rm.Conv2d(channel=1,stride=1,filter=1)
     print('Conv2d to {}x{} 1ch'.format(
         output_shape[0], output_shape[0]))
     self.dim = dim
Example #15
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = rm.Conv2d(planes, filter=1, ignore_bias=True)
     self.bn1 = rm.BatchNormalize(mode='feature')
     self.conv2 = rm.Conv2d(planes,
                            filter=3,
                            stride=stride,
                            padding=1,
                            ignore_bias=True)
     self.bn2 = rm.BatchNormalize(mode='feature')
     self.conv3 = rm.Conv2d(planes * self.expansion,
                            filter=1,
                            ignore_bias=True)
     self.bn3 = rm.BatchNormalize(mode='feature')
     self.relu = rm.Relu()
     self.downsample = downsample
     self.stride = stride
Example #16
0
 def __init__(self, channel, filter=3, prev_ch=None):
     pad = int((filter - 1) / 2)
     if prev_ch is not None:
         self._conv = rm.Conv2d(channel=channel, filter=filter, padding=pad)
         self._conv.params = {
             "w":
             rm.Variable(self._conv._initializer(
                 (channel, prev_ch, filter, filter)),
                         auto_update=True),
             "b":
             rm.Variable(np.zeros((1, channel, 1, 1), dtype=np.float32),
                         auto_update=False),
         }
         self._bn = rm.BatchNormalize(mode='feature', momentum=0.99)
     else:
         self._conv = rm.Conv2d(channel=channel, filter=filter, padding=pad)
         self._bn = rm.BatchNormalize(mode='feature', momentum=0.99)
Example #17
0
    def __init__(self,
                 class_map=None,
                 cells=7,
                 bbox=2,
                 imsize=(224, 224),
                 load_pretrained_weight=False,
                 train_whole_network=False):

        if not hasattr(cells, "__getitem__"):
            cells = (cells, cells)

        self._cells = cells
        self._bbox = bbox
        model = Darknet()
        super(Yolov1, self).__init__(class_map, imsize, load_pretrained_weight,
                                     train_whole_network, model)

        self._last_dense_size = (self.num_class +
                                 5 * bbox) * cells[0] * cells[1]
        self._freezed_network = rm.Sequential(model[:-4])
        self._network = rm.Sequential([
            rm.Conv2d(channel=1024, filter=3, padding=1, ignore_bias=True),
            rm.BatchNormalize(mode='feature'),
            rm.LeakyRelu(slope=0.1),
            rm.Conv2d(channel=1024,
                      filter=3,
                      padding=1,
                      stride=2,
                      ignore_bias=True),
            rm.BatchNormalize(mode='feature'),
            rm.LeakyRelu(slope=0.1),
            rm.Conv2d(channel=1024, filter=3, padding=1, ignore_bias=True),
            rm.BatchNormalize(mode='feature'),
            rm.LeakyRelu(slope=0.1),
            rm.Conv2d(channel=1024, filter=3, padding=1, ignore_bias=True),
            rm.BatchNormalize(mode='feature'),
            rm.LeakyRelu(slope=0.1),
            rm.Flatten(),
            rm.Dense(
                4096
            ),  # instead of locally connected layer, we are using Dense layer
            rm.LeakyRelu(slope=0.1),
            rm.Dropout(0.5),
            rm.Dense(self._last_dense_size)
        ])
        self._opt = rm.Sgd(0.0005, 0.9)
Example #18
0
 def __init__(self, planes, stride=1, downsample=None, cardinality=32):
     super(Bottleneck, self).__init__()
     self.cardinality = cardinality
     self.conv1 = rm.Conv2d(planes, filter=1, ignore_bias=True)
     self.bn1 = rm.BatchNormalize(epsilon=0.00001, mode='feature')
     self.conv2 = rm.GroupConv2d(planes,
                                 filter=3,
                                 stride=stride,
                                 padding=1,
                                 ignore_bias=True,
                                 groups=self.cardinality)
     self.bn2 = rm.BatchNormalize(epsilon=0.00001, mode='feature')
     self.conv3 = rm.Conv2d(planes * self.expansion,
                            filter=1,
                            ignore_bias=True)
     self.bn3 = rm.BatchNormalize(epsilon=0.00001, mode='feature')
     self.relu = rm.Relu()
     self.downsample = downsample
     self.stride = stride
Example #19
0
 def _gen_model(self):
     depth = self.arch['depth']
     unit = self.arch['unit']
     # excluding mini-batch size
     input_shape = self.arch['input_shape']
     output_shape = self.arch['output_shape']
     seq = []
     for i in range(depth):
         seq.append(rm.Dense(unit))
         seq.append(rm.Relu())
         if i < 1 or i == depth - 1:
             seq.append(rm.BatchNormalize())
     seq.append(rm.Dense(output_shape))
     self._model = rm.Sequential(seq)
Example #20
0
    def __init__(self, num_class):
        self.base1 = rm.Sequential([rm.Conv2d(64, filter=7, padding=3, stride=2),
                                    rm.Relu(),
                                    rm.MaxPool2d(filter=3, stride=2, padding=1),
                                    rm.BatchNormalize(mode='feature'),
                                    rm.Conv2d(64, filter=1, stride=1),
                                    rm.Relu(),
                                    rm.Conv2d(192, filter=3, padding=1, stride=1),
                                    rm.Relu(),
                                    rm.BatchNormalize(mode='feature'),
                                    rm.MaxPool2d(filter=3, stride=2, padding=1),
                                    InceptionV1Block(),
                                    InceptionV1Block([128, 128, 192, 32, 96, 64]),
                                    rm.MaxPool2d(filter=3, stride=2),
                                    InceptionV1Block([192, 96, 208, 16, 48, 64]),
                                    ])

        self.aux1 = rm.Sequential([rm.AveragePool2d(filter=5, stride=3),
                                   rm.Flatten(),
                                   rm.Dense(1024),
                                   rm.Dense(num_class)])

        self.base2 = rm.Sequential([InceptionV1Block([160, 112, 224, 24, 64, 64]),
                                    InceptionV1Block([128, 128, 256, 24, 64, 64]),
                                    InceptionV1Block([112, 144, 288, 32, 64, 64])])

        self.aux2 = rm.Sequential([rm.AveragePool2d(filter=5, stride=3),
                                   rm.Flatten(),
                                   rm.Dense(1024),
                                   rm.Dense(num_class)])

        self.base3 = rm.Sequential([InceptionV1Block([256, 160, 320, 32, 128, 128]),
                                    InceptionV1Block([256, 160, 320, 32, 128, 128]),
                                    InceptionV1Block([192, 384, 320, 48, 128, 128]),
                                    rm.AveragePool2d(filter=7, stride=1),
                                    rm.Flatten()])
        self.aux3 = rm.Dense(num_class)
 def __init__(self, input_shape, output_shape,
     growth_rate = 12,
     depth = 3,
     dropout = False,
     ):
     self.growth_rate = growth_rate
     self.depth = depth
     self.dropout = dropout
     self.input = rm.Dense(input_shape)
     self.output = rm.Dense(output_shape)
     parameters = []
     for _ in range(depth):
         parameters.append(rm.BatchNormalize())
         parameters.append(rm.Dense(growth_rate))
     self.hidden = rm.Sequential(parameters)
Example #22
0
    def __init__(self, channels=[192, 128, 192, 128, 192, 192]):
        self.conv1 = rm.Conv2d(channels[0], filter=1)
        self.batch_norm1 = rm.BatchNormalize(mode='feature')

        self.conv2_reduced = rm.Conv2d(channels[1], filter=1)
        self.batch_norm2_reduced = rm.BatchNormalize(mode='feature')
        self.conv2_1 = rm.Conv2d(channels[1], filter=(3, 1), padding=(1, 0))
        self.batch_norm2_1 = rm.BatchNormalize(mode='feature')
        self.conv2_2 = rm.Conv2d(channels[2], filter=(1, 3), padding=(0, 1))
        self.batch_norm2_2 = rm.BatchNormalize(mode='feature')

        self.conv3_reduced = rm.Conv2d(channels[3], filter=1)
        self.batch_norm3_reduced = rm.BatchNormalize(mode='feature')
        self.conv3_1 = rm.Conv2d(channels[3], filter=(3, 1), padding=(1, 0))
        self.batch_norm3_1 = rm.BatchNormalize(mode='feature')
        self.conv3_2 = rm.Conv2d(channels[3], filter=(1, 3), padding=(0, 1))
        self.batch_norm3_2 = rm.BatchNormalize(mode='feature')
        self.conv3_3 = rm.Conv2d(channels[3], filter=(3, 1), padding=(1, 0))
        self.batch_norm3_3 = rm.BatchNormalize(mode='feature')
        self.conv3_4 = rm.Conv2d(channels[4], filter=(1, 3), padding=(0, 1))
        self.batch_norm3_4 = rm.BatchNormalize(mode='feature')

        self.conv4 = rm.Conv2d(channels[5], filter=1)
        self.batch_norm4 = rm.BatchNormalize(mode='feature')
Example #23
0
    def __init__(self):
        self.conv1 = rm.Conv2d(256, filter=1)
        self.batch_norm1 = rm.BatchNormalize(mode='feature')

        self.conv2 = rm.Conv2d(256, filter=1)
        self.batch_norm2 = rm.BatchNormalize(mode='feature')

        self.conv3_red = rm.Conv2d(384, filter=1)
        self.batch_norm3_red = rm.BatchNormalize(mode='feature')
        self.conv3_1 = rm.Conv2d(256, filter=(1, 3), padding=(0, 1))
        self.batch_norm3_1 = rm.BatchNormalize(mode='feature')
        self.conv3_2 = rm.Conv2d(256, filter=(3, 1), padding=(1, 0))
        self.batch_norm3_2 = rm.BatchNormalize(mode='feature')

        self.conv4_red = rm.Conv2d(384, filter=1)
        self.batch_norm4_red = rm.BatchNormalize(mode='feature')
        self.conv4_1 = rm.Conv2d(448, filter=(1, 3), padding=(0, 1))
        self.batch_norm4_1 = rm.BatchNormalize(mode='feature')
        self.conv4_2 = rm.Conv2d(512, filter=(3, 1), padding=(1, 0))
        self.batch_norm4_2 = rm.BatchNormalize(mode='feature')
        self.conv4_3 = rm.Conv2d(256, filter=(1, 3), padding=(0, 1))
        self.batch_norm4_3 = rm.BatchNormalize(mode='feature')
        self.conv4_4 = rm.Conv2d(256, filter=(3, 1), padding=(1, 0))
        self.batch_norm4_4 = rm.BatchNormalize(mode='feature')
Example #24
0
    def __init__(self):
        self.conv1 = rm.Conv2d(128, filter=1)
        self.batch_norm1 = rm.BatchNormalize(mode='feature')

        self.conv2 = rm.Conv2d(384, filter=3, padding=1)
        self.batch_norm2 = rm.BatchNormalize(mode='feature')

        self.conv3_1 = rm.Conv2d(192, filter=1)
        self.batch_norm3_1 = rm.BatchNormalize(mode='feature')
        self.conv3_2 = rm.Conv2d(224, filter=(1, 7), padding=(0, 3))
        self.batch_norm3_2 = rm.BatchNormalize(mode='feature')
        self.conv3_3 = rm.Conv2d(256, filter=(7, 1), padding=(3, 0))
        self.batch_norm3_3 = rm.BatchNormalize(mode='feature')

        self.conv4_1 = rm.Conv2d(192, filter=1)
        self.batch_norm4_1 = rm.BatchNormalize(mode='feature')
        self.conv4_2 = rm.Conv2d(192, filter=(1, 7), padding=(0, 3))
        self.batch_norm4_2 = rm.BatchNormalize(mode='feature')
        self.conv4_3 = rm.Conv2d(224, filter=(7, 1), padding=(3, 0))
        self.batch_norm4_3 = rm.BatchNormalize(mode='feature')
        self.conv4_4 = rm.Conv2d(224, filter=(1, 7), padding=(0, 3))
        self.batch_norm4_4 = rm.BatchNormalize(mode='feature')
        self.conv4_5 = rm.Conv2d(256, filter=(7, 1), padding=(3, 0))
        self.batch_norm4_5 = rm.BatchNormalize(mode='feature')
Example #25
0
    def __init__(self, num_class, layer_per_block=[6, 12, 24, 16], growth_rate=32, train_whole_network=False):
        self.layer_per_block = layer_per_block
        self.growth_rate = growth_rate

        layers = []
        layers.append(rm.Conv2d(64, 7, padding=3, stride=2))
        layers.append(rm.BatchNormalize(epsilon=0.001, mode='feature'))
        for i in layer_per_block[:-1]:
            for j in range(i):
                layers.append(conv_block(growth_rate))
            layers.append(transition_layer(growth_rate))
        for i in range(layer_per_block[-1]):
            layers.append(conv_block(growth_rate))

        self.base = rm.Sequential(layers)
        self.fc = rm.Dense(num_class)
Example #26
0
def test_batch_normalize(a):
    layer = rm.Sequential([rm.BatchNormalize(momentum=0.1)])

    set_cuda_active(True)

    g1 = Variable(a)
    g2 = layer(g1)
    g3 = rm.sum(g2)
    g = g3.grad()
    g_g1 = g.get(g1)
    g_g2 = g.get(layer.l0.params["w"])
    g_g3 = g.get(layer.l0.params["b"])

    layer.set_models(inference=True)
    g4 = layer(g1)
    layer.set_models(inference=False)

    g2.to_cpu()
    g3.to_cpu()
    g4.to_cpu()
    g_g1.to_cpu()
    g_g2.to_cpu()
    g_g3.to_cpu()

    set_cuda_active(False)
    layer.l0._mov_mean = 0
    layer.l0._mov_std = 0

    c2 = layer(g1)
    c3 = rm.sum(c2)
    c = c3.grad()
    c_g1 = c.get(g1)
    c_g2 = g.get(layer.l0.params["w"])
    c_g3 = g.get(layer.l0.params["b"])

    layer.set_models(inference=True)
    c4 = layer(g1)
    layer.set_models(inference=False)

    close(g2, c2)
    close(g3, c3)
    close(g4, c4)
    close(c_g1, g_g1)
    close(c_g2, g_g2)
    close(c_g3, g_g3)
Example #27
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = rm.Sequential([
                rm.Conv2d(planes * block.expansion,
                          filter=1,
                          stride=stride,
                          ignore_bias=True),
                rm.BatchNormalize(mode='feature')
            ])

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return rm.Sequential(layers)
 def denseblock(self, dim=8, input_channels=10, dropout=False):
     parameters = []
     c = input_channels
     print('-> {}'.format(c))
     for _ in range(self.depth):
         c += self.growth_rate
         print('Batch Normalize')
         parameters.append(rm.BatchNormalize())
         print(' Conv2d > {}x{} {}ch'.format(dim, dim, self.growth_rate))
         parameters.append(
             rm.Conv2d(self.growth_rate, filter=3, padding=(1, 1)))
         if self.dropout:
             print('Dropout')
     c = int(c * self.compression)
     print('*Conv2d > {}x{} {}ch'.format(dim, dim, c))
     parameters.append(rm.Conv2d(c, filter=1))
     print(' Average Pooling')
     print('<- {}'.format(c))
     return parameters, c
    def __init__(
            self, 
            enc_base, dec,
            batch_size,
            latent_dim = 2,
            mode = 'simple',
            label_dim = 0,
            prior = 'normal', 
            prior_dist = None,
            hidden = 1000,
            full_rate=0.1, # 全体の形を重視するかラベル毎を重視するか
            fm_rate=1., # full_rateと同じ目的
        ):
        self.latent_dim = latent_dim
        self.mode = mode
        self.label_dim = label_dim
        self.batch_size = batch_size
        self.prior = prior
        self.prior_dist = prior_dist
        self.full_rate = full_rate
        self.fm_rate = fm_rate

        if self.mode=='clustering' or self.mode=='reduction':
            self.enc = Enc(enc_base, (latent_dim, label_dim),
            output_act=(None, rm.softmax))
        else:
            self.enc = Enc(enc_base, latent_dim)
        self.dec = dec
        self.dis = rm.Sequential([
            rm.Dense(hidden), rm.LeakyRelu(),
            rm.Dense(hidden), rm.LeakyRelu(),
            rm.Dense(1), rm.Sigmoid()
        ])
        if self.mode=='clustering' or self.mode=='reduction':
            self.cds = rm.Sequential([
                # xxx rm.BatchNormalize(), 
                # Disの最初にBNは配置してはだめ
                rm.Dense(hidden), rm.LeakyRelu(),
                rm.BatchNormalize(),
                rm.Dense(hidden), rm.LeakyRelu(),
                #rm.BatchNormalize(),
                rm.Dense(1), rm.Sigmoid()
            ])
 def __init__(
     self, input_shape, 
     output_shape, 
     growth_rate=12, 
     depth=3,
     dropout=False):
     self.depth = depth
     self.dropout = dropout
     if depth != 1:
         under_growth_rate = input_shape + growth_rate
         self.under_model = mymodel(
             under_growth_rate,
             output_shape,
             growth_rate = growth_rate,
             depth = depth - 1)
     else:
         self.output = rm.Dense(output_shape)
     self.batch = rm.BatchNormalize()
     self.conv = rm.Dense(growth_rate)