Example #1
0
    def _setting_vgg(self):
        required_params = ['layer']
        assert all(
            [k in self.hyper_parameters.keys() for k in required_params])
        assert self.task_id == Task.CLASSIFICATION.value, self.task_id
        num_layer = int(self.hyper_parameters['layer'])
        assert num_layer in [11, 16, 19], "Not supported layer num. - Vgg"

        if num_layer == 11:
            VGG = VGG11
        elif num_layer == 16:
            VGG = VGG16
        elif num_layer == 19:
            VGG = VGG19

        self.model = VGG(class_map=self.class_map,
                         imsize=self.imsize,
                         load_pretrained_weight=self.get_weight_path(VGG),
                         train_whole_network=self.train_whole)
        self.train_dist = ImageDistributor(
            self.train_img,
            self.train_target,
            augmentation=self.augmentation,
            target_builder=self.model.build_data())
        self.valid_dist = ImageDistributor(
            self.valid_img,
            self.valid_target,
            target_builder=self.model.build_data())
Example #2
0
    def _setting_inception(self):
        required_params = ['version']
        assert all(
            [k in self.hyper_parameters.keys() for k in required_params])
        assert self.task_id == Task.CLASSIFICATION.value, self.task_id
        version_num = int(self.hyper_parameters['version'])
        assert version_num in [
            1, 2, 3, 4
        ], "Not supported version number. - InceptionNet"

        if version_num == 1:
            Inception = InceptionV1
        elif num_layer == 2:
            Inception = InceptionV2
        elif num_layer == 3:
            Inception = InceptionV3
        elif num_layer == 4:
            Inception = InceptionV4

        self.model = Inception(
            class_map=self.class_map,
            imsize=self.imsize,
            load_pretrained_weight=self.get_weight_path(Inception),
            train_whole_network=self.train_whole)
        self.train_dist = ImageDistributor(
            self.train_img,
            self.train_target,
            augmentation=self.augmentation,
            target_builder=self.model.build_data())
        self.valid_dist = ImageDistributor(
            self.valid_img,
            self.valid_target,
            target_builder=self.model.build_data())
Example #3
0
    def _setting_resnext(self):
        required_params = ['layer', 'plateau']
        assert all(
            [k in self.hyper_parameters.keys() for k in required_params])
        assert self.task_id == Task.CLASSIFICATION.value, self.task_id
        num_layer = int(self.hyper_parameters['layer'])
        assert num_layer in [50, 101], "Not supported layer num. - ResNeXt"

        if num_layer == 50:
            ResNeXt = ResNeXt50
        elif num_layer == 101:
            ResNeXt = ResNeXt101

        self.model = ResNeXt(
            class_map=self.class_map,
            imsize=self.imsize,
            train_whole_network=self.train_whole,
            load_pretrained_weight=self.get_weight_path(ResNeXt),
            plateau=self.hyper_parameters["plateau"])
        self.train_dist = ImageDistributor(
            self.train_img,
            self.train_target,
            augmentation=self.augmentation,
            target_builder=self.model.build_data())
        self.valid_dist = ImageDistributor(
            self.valid_img,
            self.valid_target,
            target_builder=self.model.build_data())
Example #4
0
 def get_probability(self, img_list):
     batch_size = 32
     self.set_models(inference=True)
     if isinstance(img_list, (list, str)):
         if isinstance(img_list, (tuple, list)):
             if len(img_list) >= 32:
                 test_dist = ImageDistributor(img_list)
                 results = []
                 bar = tqdm(range(int(np.ceil(len(test_dist) /
                                              batch_size))))
                 for i, (x_img_list, _) in enumerate(
                         test_dist.batch(batch_size, shuffle=False)):
                     img_array = np.vstack([
                         load_img(path, self.imsize)[None]
                         for path in x_img_list
                     ])
                     img_array = self.preprocess(img_array)
                     results.extend(
                         np.argmax(rm.softmax(self(img_array)).as_ndarray(),
                                   axis=1))
                     bar.update(1)
                 return results
             img_array = np.vstack(
                 [load_img(path, self.imsize)[None] for path in img_list])
             img_array = self.preprocess(img_array)
         else:
             img_array = load_img(img_list, self.imsize)[None]
             img_array = self.preprocess(img_array)
             return np.argmax(rm.softmax(self(img_array)).as_ndarray(),
                              axis=1)[0]
     else:
         img_array = img_list
     return rm.softmax(self(img_array)).as_ndarray()
Example #5
0
    def create_dist(self, filename_list, train=True):
        """
        This function creates img path list and annotation list from
        filename list.

        Image file name and label file must be same.
        Because of that, data_list is a list of file names.

        Data formats are bellow.  

        image path list: [path_to_img1, path_to_img2, ...]
        annotation list:

        .. code-block :: python

            [
                [ # Annotations of each image.
                    {"box":[x, y, w, h], "name":"dog", "class":1},
                    {"box":[x, y, w, h], "name":"cat", "class":0},
                ],
                [
                    {"box":[x, y, w, h], "name":"cat", "class":0},
                ],
                ...
            ]

        Args:
            filename_list(list): [filename1, filename2, ...]
            train(bool): If it's ture, augmentation will be added to distributor.

        Returns:
            (ImageDistributor): ImageDistributor object with augmentation.

        """

        img_path_list = []
        label_path_list = []
        for path in filename_list:
            name = os.path.splitext(path)[0]
            img_path = os.path.join(DATASRC_IMG, path)
            label_path = os.path.join(DATASRC_LABEL, name + ".xml")

            if os.path.exists(img_path) and os.path.exists(label_path):
                img_path_list.append(img_path)
                label_path_list.append(label_path)
            else:
                print("{} not found.".format(name))
        annotation_list, _ = parse_xml_detection(label_path_list)
        if train:
            augmentation = Augmentation([
                Shift(min(self.imsize[0] // 10, 20), min(self.imsize[1] // 10, 20)),
                Flip(),
                Rotate(),
                WhiteNoise(),
                ContrastNorm([0.5, 1.0])
            ])
            return ImageDistributor(img_path_list, annotation_list,
                                    augmentation=augmentation)
        else:
            return ImageDistributor(img_path_list, annotation_list)
Example #6
0
    def _setting_fcn(self):
        required_params = ['layer']
        assert all(
            [k in self.hyper_parameters.keys() for k in required_params])
        assert self.task_id == Task.SEGMENTATION.value, self.task_id
        num_layer = int(self.hyper_parameters['layer'])
        assert num_layer in [8, 16, 32], "Not supported layer num. - FCN"

        if num_layer == 8:
            FCN = FCN8s
        elif num_layer == 16:
            FCN = FCN16s
        elif num_layer == 32:
            FCN = FCN32s

        self.model = FCN(class_map=self.class_map,
                         imsize=self.imsize,
                         load_pretrained_weight=self.get_weight_path(FCN),
                         train_whole_network=self.train_whole)
        self.train_dist = ImageDistributor(
            self.train_img,
            self.train_target,
            augmentation=self.augmentation,
            target_builder=self.model.build_data())
        self.valid_dist = ImageDistributor(
            self.valid_img,
            self.valid_target,
            target_builder=self.model.build_data())
Example #7
0
    def _setting_densenet(self):
        required_params = ['layer']
        assert all(
            [k in self.hyper_parameters.keys() for k in required_params])
        assert self.task_id == Task.CLASSIFICATION.value, self.task_id
        num_layer = int(self.hyper_parameters['layer'])
        assert num_layer in [121, 169,
                             201], "Not supported layer num. - DenseNet"

        if num_layer == 121:
            DenseNet = DenseNet121
        elif num_layer == 169:
            DenseNet = DenseNet169
        elif num_layer == 201:
            DenseNet = DenseNet201

        self.model = DenseNet(
            class_map=self.class_map,
            imsize=self.imsize,
            load_pretrained_weight=self.get_weight_path(DenseNet),
            train_whole_network=self.train_whole)

        self.train_dist = ImageDistributor(
            self.train_img,
            self.train_target,
            augmentation=self.augmentation,
            target_builder=self.model.build_data())
        self.valid_dist = ImageDistributor(
            self.valid_img,
            self.valid_target,
            target_builder=self.model.build_data())
Example #8
0
 def _setting_unet(self):
     assert self.task_id == Task.SEGMENTATION.value, self.task_id
     self.model = UNet(class_map=self.class_map,
                       imsize=self.imsize,
                       load_pretrained_weight=self.get_weight_path(UNet),
                       train_whole_network=self.train_whole)
     self.train_dist = ImageDistributor(
         self.train_img,
         self.train_target,
         augmentation=self.augmentation,
         target_builder=self.model.build_data())
     self.valid_dist = ImageDistributor(
         self.valid_img,
         self.valid_target,
         target_builder=self.model.build_data())
Example #9
0
 def _setting_ssd(self):
     assert all([self.hyper_parameters.keys()])
     assert self.task_id == Task.DETECTION.value, self.task_id
     self.model = SSD(class_map=self.class_map,
                      imsize=self.imsize,
                      train_whole_network=self.train_whole,
                      load_pretrained_weight=self.get_weight_path(SSD))
     self.train_dist = ImageDistributor(
         self.train_img,
         self.train_target,
         augmentation=self.augmentation,
         target_builder=self.model.build_data())
     self.valid_dist = ImageDistributor(
         self.valid_img,
         self.valid_target,
         target_builder=self.model.build_data())
Example #10
0
    def predict(self, img_list):
        """Perform prediction.
        Argument can be an image array, image path list or a image path.

        Args:
            img_list(ndarray, list, string): Image array, image path list or image path.

        Return:
            (list): List of class of each image.

        """
        batch_size = 32
        self.set_models(inference=True)
        if isinstance(img_list, (list, str)):
            if isinstance(img_list, (tuple, list)):
                if len(img_list) >= 32:
                    test_dist = ImageDistributor(img_list)
                    results = []
                    bar = tqdm(range(int(np.ceil(len(test_dist) /
                                                 batch_size))))
                    for i, (x_img_list, _) in enumerate(
                            test_dist.batch(batch_size, shuffle=False)):
                        img_array = np.vstack([
                            load_img(path, self.imsize)[None]
                            for path in x_img_list
                        ])
                        img_array = self.preprocess(img_array)
                        results.extend(
                            np.argmax(rm.softmax(self(img_array)).as_ndarray(),
                                      axis=1))
                        bar.update(1)
                    return results
                img_array = np.vstack(
                    [load_img(path, self.imsize)[None] for path in img_list])
                img_array = self.preprocess(img_array)
            else:
                img_array = load_img(img_list, self.imsize)[None]
                img_array = self.preprocess(img_array)
                return np.argmax(rm.softmax(self(img_array)).as_ndarray(),
                                 axis=1)[0]
        else:
            img_array = img_list
        return np.argmax(rm.softmax(self(img_array)).as_ndarray(), axis=1)
Example #11
0
 def _setting_yolov1(self):
     required_params = ['cell', 'box']
     # check hyper parameters value are set
     assert all(
         [k in self.hyper_parameters.keys() for k in required_params])
     assert self.task_id == Task.DETECTION.value, self.task_id
     self.model = Yolov1(
         class_map=self.class_map,
         imsize=self.imsize,
         train_whole_network=self.train_whole,
         load_pretrained_weight=self.get_weight_path(Yolov1))
     self.train_dist = ImageDistributor(
         self.train_img,
         self.train_target,
         augmentation=self.augmentation,
         target_builder=self.model.build_data())
     self.valid_dist = ImageDistributor(
         self.valid_img,
         self.valid_target,
         target_builder=self.model.build_data())
Example #12
0
    def predict(self, img_list):
        """
        Returns:
            (Numpy.array or list): If only an image or a path is given, an array whose shape is **(width, height)** is returned.
            If multiple images or paths are given, then a list in which there are arrays whose shape is **(width, height)** is returned.
        """

        batch_size = 32
        self.set_models(inference=True)
        if isinstance(img_list, (list, str)):
            if isinstance(img_list, (tuple, list)):
                if len(img_list) >= 32:
                    test_dist = ImageDistributor(img_list)
                    results = []
                    bar = tqdm()
                    bar.total = int(np.ceil(len(test_dist) / batch_size))
                    for i, (x_img_list, _) in enumerate(
                            test_dist.batch(batch_size, shuffle=False)):
                        img_array = np.vstack([
                            load_img(path, self.imsize)[None]
                            for path in x_img_list
                        ])
                        img_array = self.preprocess(img_array)
                        results.extend(
                            np.argmax(rm.softmax(self(img_array)).as_ndarray(),
                                      axis=1))
                        bar.update(1)
                    return results
                img_array = np.vstack(
                    [load_img(path, self.imsize)[None] for path in img_list])
                img_array = self.preprocess(img_array)
            else:
                img_array = load_img(img_list, self.imsize)[None]
                img_array = self.preprocess(img_array)
                return np.argmax(rm.softmax(self(img_array)).as_ndarray(),
                                 axis=1)[0]
        else:
            img_array = img_list
        return np.argmax(rm.softmax(self(img_array)).as_ndarray(), axis=1)
Example #13
0
 def _setting_yolov2(self):
     required_params = ['anchor']
     assert all(
         [k in self.hyper_parameters.keys() for k in required_params])
     assert self.task_id == Task.DETECTION.value, self.task_id
     self.model = Yolov2(
         class_map=self.class_map,
         imsize=self.imsize,
         anchor=create_anchor(self.train_target,
                              int(self.hyper_parameters.get('anchor')),
                              base_size=self.imsize),
         train_whole_network=self.train_whole,
         load_pretrained_weight=self.get_weight_path(Yolov2))
     self.train_dist = ImageDistributor(
         self.train_img,
         self.train_target,
         augmentation=self.augmentation,
         target_builder=self.model.build_data(
             imsize_list=[(i * 32, i * 32) for i in range(9, 14)]))
     self.valid_dist = ImageDistributor(
         self.valid_img,
         self.valid_target,
         target_builder=self.model.build_data())
Example #14
0
    def fit(self, train_img_path_list=None, train_annotation_list=None,
            valid_img_path_list=None, valid_annotation_list=None,
            epoch=136, batch_size=64, augmentation=None, callback_end_epoch=None):
        """
        This function performs training with given data and hyper parameters.

        Args:
            train_img_path_list(list): List of image path.
            train_annotation_list(list): List of annotations.
            valid_img_path_list(list): List of image path for validation.
            valid_annotation_list(list): List of annotations for validation.
            epoch(int): Number of training epoch.
            batch_size(int): Number of batch size.
            augmentation(Augmentation): Augmentation object.
            callback_end_epoch(function): Given function will be called at the end of each epoch.

        Returns:
            (tuple): Training loss list and validation loss list.

        Example:
            >>> train_img_path_list, train_annot_list = ... # Define own data.
            >>> valid_img_path_list, valid_annot_list = ...
            >>> model = ${class}() # Any algorithm which provided by ReNomIMG here.
            >>> model.fit(
            ...     # Feeds image and annotation data.
            ...     train_img_path_list,
            ...     train_annot_list,
            ...     valid_img_path_list,
            ...     valid_annot_list,
            ...     epoch=8,
            ...     batch_size=8)
            >>> 

        Following arguments will be given to the function ``callback_end_epoch``.

        - **epoch** (int) - Number of current epoch.
        - **model** (Model) - Model object.
        - **avg_train_loss_list** (list) - List of average train loss of each epoch.
        - **avg_valid_loss_list** (list) - List of average valid loss of each epoch.

        """

        train_dist = ImageDistributor(
            train_img_path_list, train_annotation_list, augmentation=augmentation)
        valid_dist = ImageDistributor(valid_img_path_list, valid_annotation_list)

        batch_loop = int(np.ceil(len(train_dist) / batch_size))
        avg_train_loss_list = []
        avg_valid_loss_list = []
        for e in range(epoch):
            bar = tqdm(range(batch_loop))
            display_loss = 0
            for i, (train_x, train_y) in enumerate(train_dist.batch(batch_size, target_builder=self.build_data())):
                self.set_models(inference=False)
                with self.train():
                    loss = self.loss(self(train_x), train_y)
                    reg_loss = loss + self.regularize()
                reg_loss.grad().update(self.get_optimizer(e, epoch, i, batch_loop, avg_valid_loss_list=avg_valid_loss_list))
                try:
                    loss = loss.as_ndarray()[0]
                except:
                    loss = loss.as_ndarray()
                display_loss += loss
                bar.set_description("Epoch:{:03d} Train Loss:{:5.3f}".format(e, loss))
                bar.update(1)
            avg_train_loss = display_loss / (i + 1)
            avg_train_loss_list.append(avg_train_loss)

            if valid_img_path_list is not None:
                bar.n = 0
                bar.total = int(np.ceil(len(valid_dist) / batch_size))
                display_loss = 0
                for i, (valid_x, valid_y) in enumerate(valid_dist.batch(batch_size, target_builder=self.build_data())):
                    self.set_models(inference=True)
                    loss = self.loss(self(valid_x), valid_y)
                    try:
                        loss = loss.as_ndarray()[0]
                    except:
                        loss = loss.as_ndarray()
                    display_loss += loss
                    bar.set_description("Epoch:{:03d} Valid Loss:{:5.3f}".format(e, loss))
                    bar.update(1)
                avg_valid_loss = display_loss / (i + 1)
                avg_valid_loss_list.append(avg_valid_loss)
                bar.set_description("Epoch:{:03d} Avg Train Loss:{:5.3f} Avg Valid Loss:{:5.3f}".format(
                    e, avg_train_loss, avg_valid_loss))
            else:
                bar.set_description("Epoch:{:03d} Avg Train Loss:{:5.3f}".format(e, avg_train_loss))
            bar.close()
            if callback_end_epoch is not None:
                callback_end_epoch(e, self, avg_train_loss_list, avg_valid_loss_list)
        return avg_train_loss_list, avg_valid_loss_list
Example #15
0
    def fit(self, train_img_path_list, train_annotation_list,
            valid_img_path_list=None, valid_annotation_list=None,
            epoch=160, batch_size=16, imsize_list=None, augmentation=None, callback_end_epoch=None):
        """
        This function performs training with given data and hyper parameters.
        Yolov2 is trained using multiple scale images. Therefore, this function
        requires list of image size. If it is not given, the model will be trained
        using fixed image size.

        Args:
            train_img_path_list(list): List of image path.
            train_annotation_list(list): List of annotations.
            valid_img_path_list(list): List of image path for validation.
            valid_annotation_list(list): List of annotations for validation.
            epoch(int): Number of training epoch.
            batch_size(int): Number of batch size.
            imsize_list(list): List of image size.
            augmentation(Augmentation): Augmentation object.
            callback_end_epoch(function): Given function will be called at the end of each epoch.

        Returns:
            (tuple): Training loss list and validation loss list.

        Example:
            >>> from renom_img.api.detection.yolo_v2 import Yolov2
            >>> train_img_path_list, train_annot_list = ... # Define own data.
            >>> valid_img_path_list, valid_annot_list = ...
            >>> model = Yolov2()
            >>> model.fit(
            ...     # Feeds image and annotation data.
            ...     train_img_path_list,
            ...     train_annot_list,
            ...     valid_img_path_list,
            ...     valid_annot_list,
            ...     epoch=8,
            ...     batch_size=8)
            >>>

        Following arguments will be given to the function ``callback_end_epoch``.

        - **epoch** (int) - Number of current epoch.
        - **model** (Model) - Yolo2 object.
        - **avg_train_loss_list** (list) - List of average train loss of each epoch.
        - **avg_valid_loss_list** (list) - List of average valid loss of each epoch.

        """

        if imsize_list is None:
            imsize_list = [self.imsize]
        else:
            for ims in imsize_list:
                assert (ims[0] / 32.) % 1 == 0 and (ims[1] / 32.) % 1 == 0, \
                    "Yolo v2 only accepts 'imsize' argument which is list of multiple of 32. \
                    exp),imsize=[(288, 288), (320, 320)]."

        train_dist = ImageDistributor(
            train_img_path_list, train_annotation_list, augmentation=augmentation, num_worker=8)
        if valid_img_path_list is not None and valid_annotation_list is not None:
            valid_dist = ImageDistributor(valid_img_path_list, valid_annotation_list)
        else:
            valid_dist = None

        batch_loop = int(np.ceil(len(train_dist) / batch_size))
        avg_train_loss_list = []
        avg_valid_loss_list = []

        for e in range(epoch):
            bar = tqdm(range(batch_loop))
            display_loss = 0
            for i, (train_x, train_y) in enumerate(train_dist.batch(batch_size, shuffle=True, target_builder=self.build_data(imsize_list))):
                # This is for avoiding memory over flow.
                if is_cuda_active() and i % 10 == 0:
                    release_mem_pool()
                self.set_models(inference=False)
                with self.train():
                    loss = self.loss(self(train_x), train_y)
                    reg_loss = loss + self.regularize()
                reg_loss.grad().update(self.get_optimizer(loss.as_ndarray(), e, epoch, i, batch_loop))

                try:
                    loss = float(loss.as_ndarray()[0])
                except:
                    loss = float(loss.as_ndarray())
                display_loss += loss
                bar.set_description("Epoch:{:03d} Train Loss:{:5.3f}".format(e, loss))
                bar.update(1)
            avg_train_loss = display_loss / (i + 1)
            avg_train_loss_list.append(avg_train_loss)

            if valid_dist is not None:
                if is_cuda_active():
                    release_mem_pool()
                bar.n = 0
                bar.total = int(np.ceil(len(valid_dist) / batch_size))
                display_loss = 0
                for i, (valid_x, valid_y) in enumerate(valid_dist.batch(batch_size, shuffle=False, target_builder=self.build_data())):
                    self.set_models(inference=True)
                    loss = self.loss(self(valid_x), valid_y)

                    try:
                        loss = float(loss.as_ndarray()[0])
                    except:
                        loss = float(loss.as_ndarray())
                    display_loss += loss
                    bar.set_description("Epoch:{:03d} Valid Loss:{:5.3f}".format(e, loss))
                    bar.update(1)
                avg_valid_loss = display_loss / (i + 1)
                avg_valid_loss_list.append(avg_valid_loss)
                bar.set_description("Epoch:{:03d} Avg Train Loss:{:5.3f} Avg Valid Loss:{:5.3f}".format(
                    e, avg_train_loss, avg_valid_loss))
            else:
                bar.set_description("Epoch:{:03d} Avg Train Loss:{:5.3f}".format(e, avg_train_loss))
            bar.close()
            if callback_end_epoch is not None:
                callback_end_epoch(e, self, avg_train_loss_list, avg_valid_loss_list)
        return avg_train_loss_list, avg_valid_loss_list
Example #16
0
    def predict(self, img_list, score_threshold=0.3, nms_threshold=0.4):
        """
        This method accepts either ndarray and list of image path.

        Args:
            img_list (string, list, ndarray): Path to an image, list of path or ndarray.
            score_threshold (float): The threshold for confidence score.
                                     Predicted boxes which have lower confidence score than the threshold are discarderd.
                                     Defaults to 0.3
            nms_threshold (float): The threshold for non maximum supression. Defaults to 0.4

        Return:
            (list): List of predicted bbox, score and class of each image.
            The format of return value is bellow. Box coordinates and size will be returned as
            ratio to the original image size. Therefore the range of 'box' is [0 ~ 1].

        .. code-block :: python

            # An example of return value.
            [
                [ # Prediction of first image.
                    {'box': [x, y, w, h], 'score':(float), 'class':(int), 'name':(str)},
                    {'box': [x, y, w, h], 'score':(float), 'class':(int), 'name':(str)},
                    ...
                ],
                [ # Prediction of second image.
                    {'box': [x, y, w, h], 'score':(float), 'class':(int), 'name':(str)},
                    {'box': [x, y, w, h], 'score':(float), 'class':(int), 'name':(str)},
                    ...
                ],
                ...
            ]

        Example:
            >>>
            >>> model.predict(['img01.jpg', 'img02.jpg']])
            [[{'box': [0.21, 0.44, 0.11, 0.32], 'score':0.823, 'class':1, 'name':'dog'}],
             [{'box': [0.87, 0.38, 0.84, 0.22], 'score':0.423, 'class':0, 'name':'cat'}]]

        Note:
            Box coordinate and size will be returned as ratio to the original image size.
            Therefore the range of 'box' is [0 ~ 1].

        """
        batch_size = 32
        self.set_models(inference=True)
        if isinstance(img_list, (list, str)):
            if isinstance(img_list, (tuple, list)):
                if len(img_list) >= 32:
                    test_dist = ImageDistributor(img_list)
                    results = []
                    bar = tqdm()
                    bar.total = int(np.ceil(len(test_dist) / batch_size))
                    for i, (x_img_list, _) in enumerate(
                            test_dist.batch(batch_size, shuffle=False)):
                        img_array = np.vstack([
                            load_img(path, self.imsize)[None]
                            for path in x_img_list
                        ])
                        img_array = self.preprocess(img_array)
                        results.extend(
                            self.get_bbox(
                                self(img_array).as_ndarray(), score_threshold,
                                nms_threshold))
                        bar.update(1)
                    return results
                img_array = np.vstack(
                    [load_img(path, self.imsize)[None] for path in img_list])
                img_array = self.preprocess(img_array)
            else:
                img_array = load_img(img_list, self.imsize)[None]
                img_array = self.preprocess(img_array)
                return self.get_bbox(
                    self(img_array).as_ndarray(), score_threshold,
                    nms_threshold)[0]
        else:
            img_array = img_list
        return self.get_bbox(
            self(img_array).as_ndarray(), score_threshold, nms_threshold)
Example #17
0
    def fit(self,
            train_img_path_list=None,
            train_annotation_list=None,
            valid_img_path_list=None,
            valid_annotation_list=None,
            epoch=136,
            batch_size=64,
            augmentation=None,
            callback_end_epoch=None,
            class_weight=None):

        train_dist = ImageDistributor(train_img_path_list,
                                      train_annotation_list,
                                      augmentation=augmentation)
        valid_dist = ImageDistributor(valid_img_path_list,
                                      valid_annotation_list)

        batch_loop = int(np.ceil(len(train_dist) / batch_size))
        avg_train_loss_list = []
        avg_valid_loss_list = []
        for e in range(epoch):
            bar = tqdm(range(batch_loop))
            display_loss = 0
            for i, (train_x, train_y) in enumerate(
                    train_dist.batch(batch_size,
                                     target_builder=self.build_data())):
                self.set_models(inference=False)
                with self.train():
                    loss = self.loss(self(train_x),
                                     train_y,
                                     class_weight=class_weight)
                    reg_loss = loss + self.regularize()
                try:
                    loss = loss.as_ndarray()[0]
                except:
                    loss = loss.as_ndarray()
                reg_loss.grad().update(
                    self.get_optimizer(loss, e, epoch, i, batch_loop))
                display_loss += loss
                bar.set_description("Epoch:{:03d} Train Loss:{:5.3f}".format(
                    e, loss))
                bar.update(1)
            avg_train_loss = display_loss / (i + 1)
            avg_train_loss_list.append(avg_train_loss)

            if valid_img_path_list is not None:
                bar.n = 0
                bar.total = int(np.ceil(len(valid_dist) / batch_size))
                display_loss = 0
                for i, (valid_x, valid_y) in enumerate(
                        valid_dist.batch(batch_size,
                                         target_builder=self.build_data())):
                    self.set_models(inference=True)
                    loss = self.loss(self(valid_x),
                                     valid_y,
                                     class_weight=class_weight)
                    try:
                        loss = loss.as_ndarray()[0]
                    except:
                        loss = loss.as_ndarray()
                    display_loss += loss
                    bar.set_description(
                        "Epoch:{:03d} Valid Loss:{:5.3f}".format(e, loss))
                    bar.update(1)
                avg_valid_loss = display_loss / (i + 1)
                avg_valid_loss_list.append(avg_valid_loss)
                bar.set_description(
                    "Epoch:{:03d} Avg Train Loss:{:5.3f} Avg Valid Loss:{:5.3f}"
                    .format(e, avg_train_loss, avg_valid_loss))
            else:
                bar.set_description(
                    "Epoch:{:03d} Avg Train Loss:{:5.3f}".format(
                        e, avg_train_loss))
            bar.close()
            if callback_end_epoch is not None:
                callback_end_epoch(e, self, avg_train_loss_list,
                                   avg_valid_loss_list)
        return avg_train_loss_list, avg_valid_loss_list