def cleanData(self, sentences): regExp = ExpandContractions() sentences = sentences.map(lambda x: regExp.expandContractions(x)) replacer = RepeatReplacer() sentences = sentences.map(lambda x: replacer.replace(x)) sentences = sentences.map(lambda x: x.encode('ascii', 'ignore')) normalize = NormalizeWords() sentences = sentences.map( lambda x: normalize.normalizeWords(x.decode("utf-8"))) joinData = JoinData() sentences = sentences.map(lambda x: joinData.join(x)) ## reference:https://stackoverflow.com/questions/15586721/wordnet-lemmatization-and-pos-tagging-in-python # We are tagging the tokens with its respective POS using Lemmatizer tag_map = defaultdict(lambda: wn.NOUN) tag_map['J'] = wn.ADJ tag_map['V'] = wn.VERB tag_map['R'] = wn.ADV lmtzr = WordNetLemmatizer() for i in range(len(sentences)): pos_tokens = pos_tag(word_tokenize(sentences[i])) sentences[i] = [ lmtzr.lemmatize(token, tag_map[tag[0]]) for (token, tag) in pos_tokens ] sentences = sentences.map(lambda x: joinData.join(x)) return sentences
def __init__(self, word2vec_provider: Word2VecProvider, emoji_provider: EmojiProvider): self._emoji_provider = emoji_provider self._repeat_replacer = RepeatReplacer() self._polarity_replacer = PolarityReplacer() self._replacement_patterns = NEGATION_REPLACEMENT_PATTERNS self._replacement_patterns.extend([ # remove urls (r'((www\.[^\s]+)|(https?://[^\s]+))', ''), # remove usernames (r'@[^\s]+', ''), # remove # from hashtags (r'#([^\s]+)', r'\1'), # leave only letters (r'[^a-zA-Z]+', ' '), # remove months (r'(\b\d{1,2}\D{0,3})?\b(?:jan(?:uary)?|feb(?:ruary)?|mar(?:ch)?|apr(?:il)?|may|jun(?:e)?|jul(?:y)?|' + r'aug(?:ust)?|sep(?:tember)?|oct(?:ober)?|(nov|dec)(?:ember)?)\D?(\d{1,2}(st|nd|rd|th)?)?(([,.\-\/])' + r'\D?)?((19[7-9]\d|20\d{2})|\d{2})*', '') ]) self._regexp_replacer = RegexpReplacer(self._replacement_patterns) self._stem_replacer = StemReplacer() self._word2vec_provider = word2vec_provider self._stopwords = stopwords.words('english') # drop negation words from stopwords self._stopwords.extend(['NEG_' + word for word in self._stopwords]) self._stopwords.extend(["'nt", "st", "nd", "rd", "th", "rt"]) self._stopwords.extend(self._emoji_provider.emoji)
def ExtWd_preprocessing(sentence): """ Separate words for a sample (or, a sentence), while pre-processing """ tokens = word_tokenize(sentence) stopset = set(stopwords.words('english')) lemmatizer = nltk.stem.wordnet.WordNetLemmatizer() s = nltk.stem.SnowballStemmer('english') stemmer = PorterStemmer() replacerReplacer = RepeatReplacer() words_cleaned = [] for w in tokens: if w.isalpha( ) == True: # 2) check if all the characters in a word is alphabetic w = replacerReplacer.replace(w) # 5) replace repeating characters w = w.lower() # 1) lowercase if w not in stopset: # 3) remove stopwords words_cleaned.append(stemmer.stem( lemmatizer.lemmatize(w))) # 4) stem words return words_cleaned
def repeat_replacer_document(document): from replacers import RepeatReplacer replacer = RepeatReplacer() return replacer.replace(document)
from replacers import RegexpReplacer from replacers import RepeatReplacer from replacers import AntonymReplacer from replacers import SpellingReplacer # from pickle import dump # # output = open('t2.pkl', 'wb') # dump(t2, output, -1) # output.close() test = "DO NOT GO THERE !!!\n\n1. I knew it was questionbale when i brought in oil i purchased for them to change out. He said they don't do this, because they like to purchase it. In other words, he needed to mark up the price for the same oil.\n\n2. He told me that our Shocks were blown out and said that we can't drive too far. Normally, when your shocks are blown out, your ride will be like a bouncing ball. I closely monitored my drive and i did not have a bumpy ride that indicated blown out shocks. I took it to two separate mechanics and they tested the car and said if the shocks were bad, the car would bounce up and down. \n\nBasically, the owner lied about the shocks to get me to pay to fix them. \n\n3. One of my light bulbs is going out. I looked up the model # to replace them and i went to autozone to purchase the ones for my car. The owner said that these are the wrong headlights and I needed a more expensive set. Now, mind you- the model's I had were based on Lexus' recommendation. \n\nHe then said that it would cost over $300 dollars to change out the bulbs. The bulbs he recommend was about $80 bucks, which means over 200 of labor. \n\nHe will over exaggerate everything to get you to pay more. \n\n\nBtw, I sent my wife in to see if he would try to run up maintenance. \n\nI would not recommend this place at all. He is not goood." test = test.lower() regex_replacer = RegexpReplacer() repeat_replacer = RepeatReplacer() spell_replacer = SpellingReplacer() antonym_replacer = AntonymReplacer() test = regex_replacer.replace(test) # test = repeat_replacer.replace(test) # tokens = antonym_replacer.replace_negations(sentence) # tokens = repeat_replacer.replace(word) # print(test) sentences = nltk.sent_tokenize(test) # # print(sentences) stopwords = nltk.corpus.stopwords.words('english') puncs = set(string.punctuation)
import nltk from replacers import RepeatReplacer replacer = RepeatReplacer() print(replacer.replace('happy'))
lowercase_words[i] = tokens[i].lower() #replacing words with regular expressiong, i.e., 'won't' with 'will not' #start with s, the untokenized text replacer = RegexpReplacer() replacedText = replacer.replace(s) print(replacedText[:1000]) a = "I'm art won't bar can't he isn't you won't and they've but would've and she's while you're good and i'd here I'd" a = replacer.replace(a) print(a) #edit words with repeating characters and then tokenize a test sentence #will probably use on forum posts forumPost = 'I just looooooove it. It is ooooooh so fun aaah oooookaaay whateverrrrr' repReplacer = RepeatReplacer() forumPostTokenized = word_tokenize(forumPost) for i in range(0, len(forumPostTokenized)): forumPostTokenized[i] = repReplacer.replace(forumPostTokenized[i]) forumPostTokenized = ' '.join(forumPostTokenized) print("\n\nBefore: ") print(forumPost) print("After: ") print(forumPostTokenized) #normalization in a different order. Normalize all text before it is tokenized #first expand contractions str1 = ''.join(s) str1 = replacer.replace(str1)
from replacers import AntonymReplacer from replacers import RegexpReplacer from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize #reading the csv file and extracting the column of tweets into a list csv_file=sys.argv[1] df=pd.read_csv(csv_file) saved_column=df['text'] list1=list(saved_column) #print (list1) replacer=AntonymReplacer() rep1=RepeatReplacer() rep2=RegexpReplacer() for i in range(0,len(list1)): list1[i]=re.sub(r'[^\x00-\x7F]',r' ',list1[i]) #Replacing non-ascii characters with a space list1[i]=rep2.replace(list1[i]) #texts like can't are converted into can not list1[i]=list1[i].split() #Splitting each sentence into words #list1[i]=[w for w in list1[i] if (len(w)>2)] #String length of a word is more than 2 list1[i]=replacer.replace_negations(list1[i]) #Replaces the negative words with antonyms emo={} f=open('emotions.txt','r') for line in f: line=line.split(',') emo[line[0]]=line[1].rstrip() #print(emo)
import nltk from replacers import RepeatReplacer replacer=RepeatReplacer() print(replacer.replace('lotttt')) print(replacer.replace('ohhhhh')) print(replacer.replace('ooohhhhh'))
import nltk from replacers import RepeatReplacer replacer = RepeatReplacer() print(replacer.replace('lotttt')) print(replacer.replace('ohhhhh')) print(replacer.replace('ooohhhhh'))
import nltk from replacers import RepeatReplacer replacer=RepeatReplacer() print(replacer.replace('happy'))
class TweetFeatureExtractor(BaseEstimator, TransformerMixin): def __init__(self, word2vec_provider: Word2VecProvider, emoji_provider: EmojiProvider): self._emoji_provider = emoji_provider self._repeat_replacer = RepeatReplacer() self._polarity_replacer = PolarityReplacer() self._replacement_patterns = NEGATION_REPLACEMENT_PATTERNS self._replacement_patterns.extend([ # remove urls (r'((www\.[^\s]+)|(https?://[^\s]+))', ''), # remove usernames (r'@[^\s]+', ''), # remove # from hashtags (r'#([^\s]+)', r'\1'), # leave only letters (r'[^a-zA-Z]+', ' '), # remove months (r'(\b\d{1,2}\D{0,3})?\b(?:jan(?:uary)?|feb(?:ruary)?|mar(?:ch)?|apr(?:il)?|may|jun(?:e)?|jul(?:y)?|' + r'aug(?:ust)?|sep(?:tember)?|oct(?:ober)?|(nov|dec)(?:ember)?)\D?(\d{1,2}(st|nd|rd|th)?)?(([,.\-\/])' + r'\D?)?((19[7-9]\d|20\d{2})|\d{2})*', '') ]) self._regexp_replacer = RegexpReplacer(self._replacement_patterns) self._stem_replacer = StemReplacer() self._word2vec_provider = word2vec_provider self._stopwords = stopwords.words('english') # drop negation words from stopwords self._stopwords.extend(['NEG_' + word for word in self._stopwords]) self._stopwords.extend(["'nt", "st", "nd", "rd", "th", "rt"]) self._stopwords.extend(self._emoji_provider.emoji) @classmethod def _count_with_func(cls, tweet, func): count = 0 for word in tweet.split(' '): if func(word): count += 1 return count @classmethod def _count_occurrences(cls, tweet, letter): count = 0 for l in tweet: if l == letter: count += 1 return count @classmethod def _count_uppercase_words(cls, tweet): return cls._count_with_func(tweet, lambda word: word == word.upper()) @classmethod def count_exclamation(cls, tweet): return cls._count_occurrences(tweet, '!') @classmethod def count_question_marks(cls, tweet): return cls._count_occurrences(tweet, '!') def count_positive_emoji(self, tweet): return self._count_with_func( tweet, lambda word: self._emoji_provider.is_positive_emoji(word.strip())) def count_negative_emoji(self, tweet): return self._count_with_func( tweet, lambda word: self._emoji_provider.is_negative_emoji(word.strip())) def clean_tweet(self, tweet): tweet = tweet.lower() # transform html encoded symbols tweet = BeautifulSoup(tweet, 'lxml').get_text() tweet = self._regexp_replacer.replace(tweet) tweet = word_tokenize(tweet) # eg loooove -> love tweet = self._repeat_replacer.replace(tweet) # replace negations tweet = self._stem_replacer.replace(tweet) tweet = self._polarity_replacer.mark_negations(tweet) return " ".join( [word for word in tweet if word not in self._stopwords]).strip() def get_avg_word_similarity(self, tweet, main_word): current_similarities = set() for word in tweet.split(' '): sim = self._word2vec_provider.get_similarity( main_word, word.lower()) if sim is not None: current_similarities.add(sim) if len(current_similarities) == 0: return if len(current_similarities) == 1: return current_similarities.pop() # return np.mean(zscore(list(current_similarities))) # if len(current_similarities) == 1: # return current_similarities[0 ] current_similarities = list(current_similarities) max_sim = np.max(current_similarities) min_sim = np.min(current_similarities) # normalize to <0;1> return list( np.mean([((sim - min_sim) / (max_sim - min_sim)) for sim in current_similarities])) def get_word2vec_vector(self, tweet): current_word2vec = [] for word in tweet.split(' '): vec = self._word2vec_provider.get_vector(word.lower()) if vec is not None: current_word2vec.append(vec) if len(current_word2vec) == 0: return np.zeros(200) return np.array(current_word2vec).mean(axis=0) def fit(self, x, y=None): return self def transform(self, texts): features = np.recarray(shape=(len(texts), ), dtype=[('pos_emoji_count', float), ('neg_emoji_count', float), ('uppercase_word_count', float), ('exclamation_count', float), ('question_mark_count', float), ('clean_text', object), ('word2vec', np.ndarray)]) for i, text in enumerate(texts): features['pos_emoji_count'][i] = self.count_positive_emoji(text) features['neg_emoji_count'][i] = self.count_negative_emoji(text) features['uppercase_word_count'][i] = self._count_uppercase_words( text) features['exclamation_count'][i] = self.count_exclamation(text) features['question_mark_count'][i] = self.count_question_marks( text) features['clean_text'][i] = self.clean_tweet(text) features['word2vec'][i] = self.get_word2vec_vector(text) return features