Example #1
0
    def test_replay_buffer(self):
        buf_len = 14
        replay_buffer = PrioritizedReplayBuffer(14, 3, 2)
        dones = [
            0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 1
        ]
        valid_flag = [
            0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
            1, 1
        ]
        for i in range(len(dones)):
            exp = Experience(random.random(), i, dones[i])
            replay_buffer.add_experience(exp)
            if i + len(dones) < buf_len:
                end = i + 1
                begin = max(end - buf_len, 0)
                self.assertEqual(replay_buffer.num_valid_experiences(),
                                 sum(valid_flag[begin:end]))
        features, indices, is_weights = \
            replay_buffer.get_sample_features(100, self.make_sample)
        for idx in indices:
            self.assertGreater(idx, 2)
            self.assertLess(idx, buf_len - 2)
        replay_buffer.update_priority(range(buf_len), [0] * buf_len)

        # verify the sample distribution is correct
        p1 = 8.
        p2 = 15.
        p3 = 9.
        n = 10000
        replay_buffer.update_priority([5, 6, 11], [p1, p2, p3])
        p = p1 + p2 + p3
        p1 /= p
        p2 /= p
        p3 /= p
        indices, is_weights = replay_buffer.get_sample_indices(n)
        self.assertEqual(len(indices), n)
        n1 = sum([x == 5 for x in indices])
        n2 = sum([x == 6 for x in indices])
        n3 = sum([x == 11 for x in indices])
        print("Expectation: ", n * p1, n * p2, n * p3)
        print("Actual: ", n1, n2, n3)
        self.assertLess(abs(n1 - p1 * n), 1)
        self.assertLess(abs(n2 - p2 * n), 1)
        self.assertLess(abs(n3 - p3 * n), 1)
        self.assertEqual(n1 + n2 + n3, n)
class Agent():
    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 buffer_size=int(1e5),
                 batch_size=64,
                 gamma=0.99,
                 tau=1e-3,
                 lr=5e-4,
                 hidden_layers_size=[64, 32],
                 update_every=4,
                 update_target_very=12,
                 alpha=0.6,
                 beta=0.4,
                 beta_increment=1e-3,
                 prior_eps=1e-6):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
            alpha: determines how much prioritization is used
            beta: determines how much importance smapling is used
            beta_increment: linear increment of beta
            prior_eps : guarantees every transition can be sampled
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        self.buffer_size = buffer_size
        self.batch_size = batch_size
        self.gamma = gamma
        self.tau = tau
        self.lr = lr
        self.update_every = update_every
        self.update_target_very = update_target_very
        self.alpha = 0.6
        self.beta = 0.4
        self.beta_increment = beta_increment
        self.prior_eps = prior_eps

        # Q-Network
        self.qnetwork_local = DQNNetwork(
            state_size,
            action_size,
            seed,
            hidden_layers_size=hidden_layers_size).to(device)
        self.qnetwork_target = DQNNetwork(
            state_size,
            action_size,
            seed,
            hidden_layers_size=hidden_layers_size).to(device)
        self.qnetwork_target.load_state_dict(self.qnetwork_local.state_dict())
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = PrioritizedReplayBuffer(action_size, buffer_size,
                                              batch_size, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        self.t_target_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        #linear increase of beta
        self.beta = min(self.beta + self.beta_increment, 1.0)

        # If enough samples are available in memory, get random subset and learn
        if len(self.memory) > self.batch_size:
            # Learn every UPDATE_EVERY time steps.
            self.t_step = self.t_step + 1

            if self.t_step % self.update_every == 0:
                experiences = self.memory.sample(self.beta)
                #                 print(experiences[6])
                self.learn(experiences, self.gamma)
            """
            a implementation of fixed Q-Targets
            """
            if self.t_step % self.update_target_very == 0:
                self.update_target_Q()

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma, method='DQN'):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones, weights, indices = experiences  #already to(device)

        ## TODO: compute and minimize the loss
        self.optimizer.zero_grad()

        if method == 'DQN':
            target_values = self.qnetwork_target.forward(next_states)
            #Q Learning with the max q(next_state, a)
            accumulated_rewards = rewards.squeeze(
                1) + gamma * target_values.max(dim=1)[0]
        else:
            max_actions = self.qnetwork_local.forward(next_states)
            max_actions = max_actions.argmax(dim=1).unsqueeze(1)
            target_values = self.qnetwork_target.forward(next_states)
            evaluate_target_values = target_values.gather(1, max_actions)
            accumulated_rewards = rewards.squeeze(
                1) + gamma * evaluate_target_values.squeeze(1)

        # get the old q(current_state, action)
        old_values = self.qnetwork_local.forward(states).gather(
            1, actions).squeeze(1)

        #detect done
        done_index = dones.argmax().item()
        if dones[done_index].item():
            accumulated_rewards[
                done_index] = 0.0  #should not be rewards[done_index], which is acturally -100

        elementary_loss = (accumulated_rewards - old_values).pow(2)
        loss = (elementary_loss * weights.squeeze(1)).mean()
        loss.backward()
        self.optimizer.step()

        #update transition priority
        loss_for_prior = elementary_loss.detach().cpu().numpy()
        loss_for_prior = loss_for_prior + self.prior_eps
        self.memory.update_priority(indices, loss_for_prior)

        # ------------------- update target network ------------------- #
#         self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def criterion(self, accumulated_rewords, old_values):
        return (accumulated_rewords - old_values).pow(2).mean()

    def update_target_Q(self):
        #         self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
        self.qnetwork_target.load_state_dict(self.qnetwork_local.state_dict())

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)